Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Cell Mater ; 44: 43-55, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976149

RESUMO

The interphase between tendon and bone consists of a highly specialised tissue called enthesis. Typically, the enthesis is described as a succession of four different zones: tendon, non-mineralised fibrocartilage, mineralised fibrocartilage and bone. However, the microstructure of the entheses, cellular composition and mechanical properties vary depending on their anatomical location. The present study aimed to characterise three of the most relevant sites of enthesis injury in a rat model: the patellar tendon, the Achilles tendon and the supraspinatus enthesis, in terms of biomechanics, histology and genetic expression. The patellar enthesis presented the highest ultimate load and lowest stiffness of the three, while the supraspinatus was the weakest and stiffest. The histological characterisation revealed key differences at the insertion site for each enthesis. The patellar enthesis showed a large cartilaginous area at the tendon-to-bone interphase whilst this interphase was smaller in the supraspinatus entheses samples. Furthermore, the Achilles tendon enthesis displayed a more abrupt transition from tendon to bone. Additionally, each enthesis exhibited a particular and distinct pattern of expression of tenogenic, chondrogenic and osteogenic markers. This study provided valuable insights for a better understanding of the three entheses at relevant anatomical sites. Moreover, the larger cross-sectional area of the patellar enthesis, the strong mechanical properties and the easier surgical access to this location led to the conclusion that the patellar tendon enthesis site could be most suitable for the development of a preclinical model for general enthesis regeneration studies in rats.


Assuntos
Tendão do Calcâneo , Fibrocartilagem , Tendão do Calcâneo/patologia , Animais , Osso e Ossos , Osteogênese , Ratos , Manguito Rotador
2.
Eur Cell Mater ; 40: 160-171, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021330

RESUMO

There is much interest in understanding the influence of the immune system on bone healing, including a number of reports suggesting a beneficial effect of FK506 (tacrolimus) in this regard. The influence of FK506 in a rat, femoral, critical size defect was examined using locally implanted, recombinant, human (rh) BMP-2 and adenovirally-transduced, autologous, adipose-derived mesenchymal stromal cells (AD-MSCs) expressing BMP-2. FK506 was delivered systemically using an implanted osmotic pump. Empty defects and those implanted with unmodified AD-MSCs did not heal in the presence or absence of FK506. Defects treated with rhBMP-2 healed with a large callus containing thin cortices and wispy trabeculae; this, too, was unaffected by FK506. A third of defects implanted with adenovirally-transduced AD-MSCs healed, but this improved to 100 % in the presence of FK506. New bone formed in response to BMP-2 synthesised endogenously by the genetically modified cells had a slimmer callus than those healed by rhBMP-2, with improved cortication and advanced reconstitution of marrow. These results suggest that FK506 may have had little effect on the intrinsic biology of bone healing, but improved healing in response to adenovirally-transduced cells by inhibiting immune responses to the first-generation adenovirus used here. Because the genetically modified cells produced bone of higher quality at far lower doses of BMP-2, this approach should be explored in subsequent research.


Assuntos
Diáfises/patologia , Fêmur/patologia , Tacrolimo/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diáfises/diagnóstico por imagem , Diáfises/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fibrina/metabolismo , Masculino , Ratos Endogâmicos F344 , Torção Mecânica
4.
J Biomech ; 81: 52-57, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30293824

RESUMO

Rodent models are commonly used to investigate tendon healing, with the biomechanical and structural properties of the healed tendons being important outcome measures. Tendon storage for later testing becomes necessary when performing large experiments with multiple time-points. However, it is unclear whether freezing rodent tendons affects their material properties. Thus the aim of this study was to determine whether freezing rat Achilles tendons affects their biomechanical or structural properties. Tendons were frozen at either -20 °C or -80 °C directly after harvesting, or tested when freshly harvested. Groups of tendons were subjected to several freeze-thaw cycles (1, 2, and 5) within 3 months, or frozen for 9 months, after which the tendons were subjected to biomechanical testing. Additionally, fresh and thawed tendons were compared morphologically, histologically and by transmission electron microscopy. No major differences in biomechanical properties were found between fresh tendons and those frozen once or twice at -20 °C or -80 °C. However, deterioration of tendon properties was found for 5-cycle groups and both long-term freezing groups; after 9 months of freezing at -80 °C the tear resistance of the tendon was reduced from 125.4 ±â€¯16.4N to 74.3 ±â€¯18.4N (p = 0.0132). Moreover, tendons stored under these conditions showed major disruption of collagen fibrils when examined by transmission electron microscopy. When examined histologically, fresh samples exhibited the best cellularity and proteoglycan content of the enthesis. These properties were preserved better after freezing at -80 °C than after freezing at -20 °C, which resulted in markedly smaller chondrocytes and less proteoglycan content. Overall, the best preservation of histological integrity was seen with tendons frozen once at -80 °C. In conclusion, rat Achilles tendons can be frozen once or twice for short periods of time (up to 3 months) at -20 °C or -80 °C for later testing. However, freezing for 9 months at either -20 °C or -80 °C leads to deterioration of certain parameters.


Assuntos
Tendão do Calcâneo/fisiologia , Congelamento , Tendão do Calcâneo/ultraestrutura , Animais , Fenômenos Biomecânicos , Masculino , Microscopia Eletrônica de Transmissão , Ratos Sprague-Dawley , Preservação de Tecido
5.
Eur Cell Mater ; 34: 341-364, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29205258

RESUMO

Disease-modifying osteoarthritis drugs (DMOADs) should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex) inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex) were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT). Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG) loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.


Assuntos
Lesões do Ligamento Cruzado Anterior/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Avidina/química , Dexametasona/farmacologia , Portadores de Fármacos/síntese química , Osteoartrite/tratamento farmacológico , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Ligamento Cruzado Anterior/metabolismo , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/patologia , Anti-Inflamatórios/farmacocinética , Avidina/farmacocinética , Transporte Biológico , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Dexametasona/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/farmacocinética , Cálculos da Dosagem de Medicamento , Feminino , Glicosaminoglicanos/metabolismo , Injeções Intra-Articulares , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteófito/patologia , Osteófito/prevenção & controle , Permeabilidade , Coelhos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA