Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1220: 93-119, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388247

RESUMO

Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.


Assuntos
Doença , Saúde , Mastócitos/imunologia , Animais , Humanos , Mastócitos/efeitos dos fármacos , Microbiologia , Transplantes/imunologia , Peçonhas/toxicidade
2.
PLoS One ; 9(10): e108881, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303643

RESUMO

Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (Podxl(ΔEC) mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although Podxl(ΔEC) adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. Podxl(ΔEC) endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, Podxl(ΔEC) endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture.


Assuntos
Permeabilidade Capilar , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Sialoglicoproteínas/metabolismo , Animais , Adesão Celular , Células Cultivadas , Células Endoteliais/patologia , Deleção de Genes , Pulmão/patologia , Camundongos , Sialoglicoproteínas/genética
3.
Allergy Asthma Clin Immunol ; 8(1): 15, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22935073

RESUMO

BACKGROUND: Allergy to peanuts results in severe anaphylactic responses in affected individuals, and has dramatic effects on society and public policy. Despite the health impacts of peanut-induced anaphylaxis (PIA), relatively little is known about immune mechanisms underlying the disease. Using a mouse model of PIA, we evaluated mice with deletions in four distinct immune molecules (IL7Rα, L-selectin, CD34, CD103), for perturbed responses. METHODS: PIA was induced by intragastric sensitization with peanut antigen and cholera toxin adjuvant, followed by intraperitoneal challenge with crude peanut extract (CPE). Disease outcome was assessed by monitoring body temperature, clinical symptoms, and serum histamine levels. Resistant mice were evaluated for total and antigen specific serum IgE, as well as susceptibility to passive systemic anaphylaxis. RESULTS: PIA responses were dramatically reduced in IL7Rα-/- and L-selectin-/- mice, despite normal peanut-specific IgE production and susceptibility to passive systemic anaphylaxis. In contrast, CD34-/- and CD103-/- mice exhibited robust PIA responses, indistinguishable from wild type controls. CONCLUSIONS: Loss of L-selectin or IL7Rα function is sufficient to impair PIA, while CD34 or CD103 ablation has no effect on disease severity. More broadly, our findings suggest that future food allergy interventions should focus on disrupting sensitization to food allergens and limiting antigen-specific late-phase responses. Conversely, therapies targeting immune cell migration following antigen challenge are unlikely to have significant benefits, particularly considering the rapid kinetics of PIA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA