Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 225(6): 2557-2566, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31677163

RESUMO

The mycorrhizal-associated nutrient economy hypothesis proposes a strong connection between plant and fungal traits and the dominant form of soil nutrients. If true, then shifting from an organic to an inorganic nutrient economy should benefit arbuscular mycorrhizal (AM) trees because they are more suited to acquiring inorganic forms of nutrients and have limited decomposing capabilities when compared with ectomycorrhizal (ECM) trees. An inorganic nutrient economy was experimentally promoted by applying inorganic phosphorus (P) fertiliser and/or elevating soil pH with lime in three Allegheny Plateau mixed-mesophytic forests. Trees were measured over seven growing seasons to determine how growth responded to the treatments based on mycorrhizal association. AM-associated trees showed increased growth in response to increased inorganic nutrients, but ECM tree growth was suppressed when compared with the control. We also observed that understory and mid-story trees responded to the treatments, but large overstory trees showed no significant growth response. Results support the hypothesis that AM trees respond positively to an inorganic nutrient economy. While raising pH in acidic soils can be detrimental to ECM tree growth, the exact mechanism for this response is unclear.


Assuntos
Micorrizas , Florestas , Nutrientes , Raízes de Plantas , Solo , Microbiologia do Solo , Árvores
2.
Sci Total Environ ; 609: 341-347, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28753509

RESUMO

Intensive tillage and high inputs of chemicals are frequently used in conventional agriculture management, which critically depresses soil properties and causes soil erosion and nonpoint source pollution. Conservation practices, such as no-tillage and organic farming, have potential to enhance soil health. However, the long-term impact of no-tillage and organic practices on soil microbial diversity and community structure has not been fully understood, particularly in humid, warm climate regions such as the southeast USA. We hypothesized that organic inputs will lead to greater microbial diversity and a more stable microbial community, and that the combination of no-tillage and organic inputs will maximize soil microbial diversity. We conducted a long-term experiment in the southern Appalachian mountains of North Carolina, USA to test these hypotheses. The results showed that soil microbial diversity and community structure diverged under different management regimes after long term continuous treatments. Organic input dominated the effect of management practices on soil microbial properties, although no-tillage practice also exerted significant impacts. Both no-tillage and organic inputs significantly promoted soil microbial diversity and community stability. The combination of no-tillage and organic management increased soil microbial diversity over the conventional tillage and led to a microbial community structure more similar to the one in an adjacent grassland. These results indicate that effective management through reducing tillage and increasing organic C inputs can enhance soil microbial diversity and community stability.


Assuntos
Agricultura/métodos , Microbiologia do Solo , Região dos Apalaches , North Carolina , Solo
3.
Ecology ; 97(10): 2815-2823, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859112

RESUMO

The roots of the majority of tree species are associated with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. The absorptive roots of tree species also vary widely in their diameter. The linkages between root thickness, mycorrhiza type and nutrient foraging are poorly understood. We conducted a large root ingrowth experiment in the field to investigate how absorptive roots of varying thickness and their associated fungi (AM vs. EM) exploit different nutrient patches (inorganic and organic) in a common garden. In nutrient-rich patches, thin-root tree species more effectively proliferated absorptive roots than thick-root tree species, whereas thick-root tree species proliferated more mycorrhizal fungal biomass than thin-root tree species. Moreover, nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients. Irrespective of root morphology, AM tree species had higher root foraging precision than mycorrhizal hyphae foraging precision within organic patches, whereas EM tree species exhibited the opposite. Our findings that roots and mycorrhizal fungi are complementary in foraging within nutrient patches provide new insights into species coexistence and element cycling in terrestrial ecosystems.


Assuntos
Micorrizas , Raízes de Plantas , Biomassa , Fungos , Solo , Árvores
4.
Proc Natl Acad Sci U S A ; 113(31): 8741-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432986

RESUMO

Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.


Assuntos
Carbono/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Simbiose , Árvores/metabolismo , Ecossistema , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
5.
Environ Monit Assess ; 188(5): 277, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27061804

RESUMO

The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P = 0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors.


Assuntos
Monitoramento Ambiental/métodos , Ácidos Graxos/análise , Rios/química , Poluição da Água/análise , Biofilmes , Biomassa , Ecossistema
6.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850158

RESUMO

Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.


Assuntos
Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Microbiologia do Solo , Árvores/microbiologia , Biomassa , Ecossistema , Florestas , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Micorrizas/genética , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Árvores/crescimento & desenvolvimento
7.
Sci Total Environ ; 466-467: 533-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23933455

RESUMO

Recent developments in nanotechnology may lead to the release of nanomaterials into the natural environment, such as soils, with largely unknown consequences. We investigated the effects of single-walled carbon nanotubes (SWCNTs), one of the most widely used nanomaterials, on soil microbial communities by incubation of soils to which powder or suspended forms of SWCNTs were added (0.03 to 1 mg g(-1) soil). To determine changes in soil microbial community composition, phospholipid fatty acid (PLFA) profiles were analyzed at 25th day of the incubation experiment. The biomass of major microbial groups including Gram-positive and Gram-negative bacteria, and fungi showed a significant negative relationship with SWCNT concentration, while the relative abundance of bacteria showed a positive relationship with SWCNT concentration. Furthermore, soils under distinct concentrations of SWCNT treatments had PLFA profiles that were significantly different from one another. Our results indicate that the biomass of a broad range of soil microbial groups is negatively related with SWCNT concentration and upon entry into soils, SWCNTs may alter microbial community composition. Our results may serve as foundation for scientific guideline on regulating the discharge of nanomaterials such as SWCNTs to the soil ecosystem.


Assuntos
Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Biota/efeitos dos fármacos , Cromatografia Gasosa , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , República da Coreia
8.
PLoS One ; 7(11): e48946, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145035

RESUMO

Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e.,

Assuntos
Ecossistema , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Árvores/metabolismo , Árvores/microbiologia , Biomassa , Concentração de Íons de Hidrogênio , Ohio , Solo , Microbiologia do Solo
9.
PLoS One ; 6(6): e21377, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731722

RESUMO

Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2(1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios.


Assuntos
Bactérias/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Ecossistema , Fungos/efeitos dos fármacos , Nitrogênio/metabolismo , Ozônio/farmacologia , Microbiologia do Solo , Aerobiose/efeitos dos fármacos , Agricultura , Biomassa , Carbono/metabolismo , Ácidos Graxos/análise , Minerais/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Fosfolipídeos/análise , Estações do Ano , Solo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia
10.
Int J Biometeorol ; 53(2): 127-34, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19037664

RESUMO

The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO(2) effluxes of litter layer and mineral soil from total soil respiration (SR) and determine the relative importance of changing temperature and moisture mediating the fluxes. We measured respiration in an oak-dominated forest with or without the O horizon for 1 year within the Oak Openings Region of northwest Ohio. Mineral soil and O horizon respiration were subtracted from mineral soil respiration (MSR) to estimate litter respiration (LR). Measurements were grouped by oak phenology to correlate changes in plant activity with respiration. The presence of the O horizon represented a large source of seasonal variation in SR. The timing of oak phenology explained some of the large changes in both SR and LR, and their relationship with temperature and moisture. The contribution to SR of respiration from the mineral soil was greatest during pre-growth and pre-dormancy, as evident by the low LR:MSR ratios of 0.65 +/- 0.10 (mean +/- SE) and 0.69 +/- 0.03, respectively, as compared to the other phenophases. Including moisture increased our ability to predict MSR and SR during the growth phenophase and LR for every phenophase. Temperature and moisture explained 85% of the variation in MSR, but only 60% of the variation in LR. The annual contribution of O horizon to SR was 48% and the ratio of litter to soil respiration was tightly coupled over a wide range of environmental conditions. Our results suggest the presence of the O horizon is a major mediator of SR.


Assuntos
Quercus/metabolismo , Solo/análise , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Conceitos Meteorológicos , Modelos Biológicos , Ohio , Folhas de Planta/metabolismo , Quercus/crescimento & desenvolvimento , Árvores/metabolismo
11.
New Phytol ; 179(3): 818-828, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18537894

RESUMO

* Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limited. * Here, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of eddy covariance and microclimate data from a 50-yr-old mixed oak woodland in northern Ohio, USA. * The stand accumulated 40% less carbon in a year with drought between bud-break and full leaf expansion (354 +/- 81 g C m(-2) yr(-1) in 2004 and 252 +/- 45 g C m(-2) yr(-1) in 2005). This was caused by greater suppression of gross ecosystem productivity (GEP; 16% = 200 g) than of ecosystem respiration (ER; 11% = 100 g) by drought. Suppressed GEP was traced to lower leaf area, lower apparent quantum yield and lower canopy conductance. The moisture sensitivity of ER may have been mediated by GEP. * The results highlight the vulnerability of the ecosystem to even a moderate drought, when it affects a critical aspect of development. Although the drought was preceded by rain, the storage capacity of the soil seemed limited to 1-2 wk, and therefore droughts longer than this are likely to impair productivity in the region.


Assuntos
Acer/metabolismo , Carbono/metabolismo , Quercus/metabolismo , Árvores/metabolismo , Água/metabolismo , Acer/crescimento & desenvolvimento , Ecossistema , Quercus/crescimento & desenvolvimento , Chuva , Estações do Ano , Solo , Temperatura , Árvores/crescimento & desenvolvimento
12.
Int J Biometeorol ; 51(2): 135-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16874506

RESUMO

Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases (pre-growth, growth, pre-dormancy, and dormancy) and SR sensitivity to changes in soil temperature (T(S)). SR was measured 53 times over 550 days within an oak forest in northwest Ohio, USA. Annual estimates of SR were calculated with a Q(10) model based on T(S) on a phenological (PT), or annual timescale (AT), or T(S) and soil volumetric water content (VWC) on a phenological (PTM) or annual (ATM) timescale. We found significant (p<0.01) difference in apparent Q(10) from year 2004 (1.23) and year 2005 (2.76) during the growth phenophase. Accounting for moisture-sensitivity increased model performance compared to temperature-only models: the error was -17% for the ATM model and -6% for the PTM model. The annual models consistently underestimated SR in summer and overestimated it in winter. These biases were reduced by delineating SR by tree phenophases and accounting for variation in soil moisture. Even though the bias of annual models in winter SR was small in absolute scale, the relative error was about 91%, and may thus have significant implications for regional and continental C balance estimates.


Assuntos
Quercus/crescimento & desenvolvimento , Solo/análise , Modelos Teóricos , Ohio , Estações do Ano , Temperatura , Árvores , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA