Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Transl Sci ; 7(1): e175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745933

RESUMO

Introduction: With persistent incidence, incomplete vaccination rates, confounding respiratory illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare resources effectively. While the overwhelming majority of pediatric infections are mild, there have been life-threatening exceptions that illuminated the need to proactively identify pediatric patients at risk of severe COVID-19 and other respiratory infectious diseases. However, a nationwide capability for developing validated computational tools to identify pediatric patients at risk using real-world data does not exist. Methods: HHS ASPR BARDA sought, through the power of competition in a challenge, to create computational models to address two clinically important questions using the National COVID Cohort Collaborative: (1) Of pediatric patients who test positive for COVID-19 in an outpatient setting, who are at risk for hospitalization? (2) Of pediatric patients who test positive for COVID-19 and are hospitalized, who are at risk for needing mechanical ventilation or cardiovascular interventions? Results: This challenge was the first, multi-agency, coordinated computational challenge carried out by the federal government as a response to a public health emergency. Fifty-five computational models were evaluated across both tasks and two winners and three honorable mentions were selected. Conclusion: This challenge serves as a framework for how the government, research communities, and large data repositories can be brought together to source solutions when resources are strapped during a pandemic.

2.
Contemp Clin Trials Commun ; 33: 101113, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938318

RESUMO

Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high-risk individuals. Methods: We conducted an observational longitudinal cohort study at individual sites throughout the U.S., enrolling adults who were members of an online health and research platform. Through direct and longitudinal connection with research participants, we applied machine learning techniques to compute individual risk scores from individually permissioned data about socioeconomic and behavioral data, in combination with predicted local prevalence data. The modeled risk scores were then used to target candidates for enrollment in a hypothetical COVID-19 detection study. The main outcome measure was the incidence rate of COVID-19 according to the risk model compared with incidence rates in actual vaccine trials. Results: When we used risk scores from 66,040 participants to recruit a balanced cohort of participants for a COVID-19 detection study, we obtained a 4- to 7-fold greater COVID-19 infection incidence rate compared with similar real-world study cohorts. Conclusion: This risk model offers the possibility of reducing costs, increasing the power of analyses, and shortening study periods by targeting for recruitment participants at higher risk.

3.
Expert Opin Drug Deliv ; 20(3): 315-322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649573

RESUMO

INTRODUCTION: There is a need for investment in manufacturing for vaccine microarray patches (vMAPs) to accelerate vMAP development and access. vMAPs could transform vaccines deployment and reach to everyone, everywhere. AREAS COVERED: We outline vMAPs' potential benefits for epidemic preparedness and for outreach in low- and lower-middle-income countries (LMICs), share lessons learned from pandemic response, and highlight that investment in manufacturing-at-risk could accelerate vMAP development. EXPERT OPINION: Pilot manufacturing capabilities are needed to produce clinical trial material and enable emergency response. Funding vMAP manufacturing scale-up in parallel to clinical proof-of-concept studies could accelerate vMAP approval and availability. Incentives could mitigate the risks of establishing multi-vMAP manufacturing facilities early.


Assuntos
Cobertura Vacinal , Vacinas , Países em Desenvolvimento , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA