Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998600

RESUMO

Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.


Assuntos
Proteínas de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Reserpina/farmacologia , Esteroide Hidroxilases , Sunitinibe/farmacologia , Animais , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/genética , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
2.
Cancer Drug Resist ; 3: 371-384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062957

RESUMO

Cells are known to release different types of vesicles such as small extracellular vesicles (sEVs) and large extracellular vesicles (LEVs). sEVs and LEVs play important roles in intercellular communication, pre-metastatic niche formation, and disease progression; both can be detected cell culture media and biological fluids. sEVs and LEVs contain a variety of protein and RNA cargo, and they are believed to impact many biological functions of the recipient cells upon their internalization or binding to cell surface proteins. It has recently been established that standard isolation techniques, such as differential ultracentrifugation, yield a mixed population of EVs. However, density gradient ultracentrifugation has been reported to allow the isolation of sEVs without cellular debris. Here, we describe the most common methods used to isolate sEVs from cell culture medium, mouse and human plasma, and a new technique for isolating sEVs from tissues as well. This article also provides detailed procedures to isolate LEVs.

4.
iScience ; 14: 199-209, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30981115

RESUMO

The ß1 integrins, known to promote cancer progression, are abundant in extracellular vesicles (EVs). We investigated whether prostate cancer (PrCa) EVs affect anchorage-independent growth and whether ß1 integrins are required for this effect. Specifically using a cell-line-based genetic rescue and an in vivo PrCa model, we show that gradient-purified small EVs (sEVs) from either cancer cells or blood from tumor-bearing TRAMP (transgenic adenocarcinoma of the mouse prostate) mice promote anchorage-independent growth of PrCa cells. In contrast, sEVs from cultured PrCa cells harboring a short hairpin RNA to ß1, from wild-type mice or from TRAMP mice carrying a ß1 conditional ablation in the prostatic epithelium (ß1pc-/-), do not. We find that sEVs, from cancer cells or TRAMP blood, are functional and co-express ß1 and sEV markers; in contrast, sEVs from ß1pc-/-/TRAMP or wild-type mice lack ß1 and sEV markers. Our results demonstrate that ß1 integrins in tumor-cell-derived sEVs are required for stimulation of anchorage-independent growth.

5.
J Cell Biochem ; 118(1): 66-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27232975

RESUMO

It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (SrcpY416 ) is co-expressed in Exo with phosphorylated FAK (FAKpY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, SrcpY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Exossomos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Exossomos/genética , Exossomos/patologia , Quinase 1 de Adesão Focal/genética , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA