Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chronobiol Int ; 41(1): 93-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047486

RESUMO

Seasonal affective disorder (SAD) is a recurrent depression triggered by exposure to short photoperiods, with a subset of patients reporting hypersomnia, increased appetite, and carbohydrate craving. Dysfunction of the microbiota - gut - brain axis is frequently associated with depressive disorders, but its role in SAD is unknown. Nile grass rats (Arvicanthis niloticus) are potentially useful for exploring the pathophysiology of SAD, as they are diurnal and have been found to exhibit anhedonia and affective-like behavior in response to short photoperiods. Further, given grass rats have been found to spontaneously develop metabolic syndrome, they may be particularly susceptible to environmental triggers of metabolic dysbiosis. We conducted a 2 × 2 factorial design experiment to test the effects of short photoperiod (4 h:20 h Light:Dark (LD) vs. neutral 12:12 LD), access to a high concentration (8%) sucrose solution, and the interaction between the two, on activity, sleep, liver steatosis, and the gut microbiome of grass rats. We found that animals on short photoperiods maintained robust diel rhythms and similar subjective day lengths as controls in neutral photoperiods but showed disrupted activity and sleep patterns (i.e. a return to sleep after an initial bout of activity that occurs ~ 13 h before lights off). We found no evidence that photoperiod influenced sucrose consumption. By the end of the experiment, some grass rats were overweight and exhibited signs of non-alcoholic fatty liver disease (NAFLD) with micro- and macro-steatosis. However, neither photoperiod nor access to sucrose solution significantly affected the degree of liver steatosis. The gut microbiome of grass rats varied substantially among individuals, but most variation was attributable to parental effects and the microbiome was unaffected by photoperiod or access to sucrose. Our study indicates short photoperiod leads to disrupted activity and sleep in grass rats but does not impact sucrose consumption or exacerbate metabolic dysbiosis and NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Transtorno Afetivo Sazonal , Humanos , Animais , Fotoperíodo , Ritmo Circadiano/fisiologia , Disbiose , Murinae/fisiologia , Sono , Carboidratos/farmacologia , Sacarose/farmacologia
2.
Integr Comp Biol ; 62(4): 980-997, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35587379

RESUMO

Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may, therefore, differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex-differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex-differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex-differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.


Assuntos
Mudança Climática , Reprodução , Feminino , Masculino , Animais , Filogenia , Evolução Biológica , Seleção Genética , Estações do Ano
3.
Peptides ; 142: 170578, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033875

RESUMO

There is poor evidence for an association between thyroidal state, feeding and appetite regulation in fish. We assessed how an altered thyroid state influences feeding behavior, food intake and expression of hypothalamic appetite-regulating peptides (Klotho-α and Klotho-ß; orexin, OX; cholecystokinin, CCK; agouti-related peptide, AgRP; cannabinoid receptor 1, CB1) in goldfish. We also measured the expressions of hypothalamic, pituitary and liver transcripts that regulate the thyroid [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptor (TRH-R) type 1, thyroid stimulating hormone beta (TSHß), deiodinases (DIO2, DIO3), UDP-glucuronosyltransferase (UGT1A1), thyroid receptor alpha and beta (TRα, TRß)], and circulating levels of total thyroxine (tT4) and total triiodothyronine (tT3). Goldfish were implanted with propylthiouracil (PTU) or T4 osmotic pumps for 12 days. T4- treatment increased feeding behavior but not food intake, increased central TSHß and DIO2, and hepatic DIO2 transcript expression and increased central DIO3 mRNA. Under hyperthyroid conditions, hypothalamic Klotho and CCK expressions were downregulated, suggesting an increased metabolic state and a hypothalamic response to regulate energy balance. AgRP, OX and CB1 were not affected by T4 treatment. PTU had no effect on any of the parameters examined, suggesting it is not a sensitive thyroid inhibitor in fish. Overall, we show that unlike in mammals, hyperthyroid conditions in goldfish do not lead to an increased desire or need to consume food, furthering evidence for a weak link between the thyroid and appetite.


Assuntos
Apetite/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/metabolismo , Fragmentos de Peptídeos/metabolismo , Propiltiouracila/farmacologia , Glândula Tireoide/fisiologia , Tiroxina/farmacologia , Animais , Antitireóideos/farmacologia , Regulação do Apetite , Metabolismo Energético , Carpa Dourada , Hipotálamo/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo
4.
Mol Cell Endocrinol ; 528: 111229, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662475

RESUMO

The thyroid axis is a major regulator of metabolism and energy homeostasis in vertebrates. There is conclusive evidence in mammals for the involvement of the thyroid axis in the regulation of food intake, but in fish, this link is unclear. In order to assess the effects of nutritional status on the thyroid axis in goldfish, Carassius auratus, we examined brain and peripheral transcripts of genes associated with the thyroid axis [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptors (TRH-R type 1 and 2), thyroid stimulating hormone beta (TSHß), deiodinase enzymes (DIO2, DIO3) and UDP-glucoronsyltransferase (UGT)] and appetite regulators [neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related peptide (AgRP) and cholecystokinin (CCK)] in fasted and overfed fish for 7 and 14 day periods. We show that the thyroid axis responds to overfeeding, with an increase of brain TRH and TSHß mRNA expression after 14 days, suggesting that overfeeding might activate the thyroid axis. In fasted fish, hepatic DIO3 and UGT transcripts were downregulated from 7 to 14 days, suggesting a time-dependent inhibition of thyroid hormone degradation pathways. Nutritional status had no effect on circulating levels of thyroid hormone. Central appetite-regulating peptides exhibited temporal changes in mRNA expression, with decreased expression of the appetite-inhibiting peptide POMC from 7 to 14 days for both fasted and overfed fish, with no change in central NPY or AgRP, or intestinal CCK transcript expression. Compared to control fish, fasting increased AgRP mRNA expression at both 7 and 14 days, and POMC expression was higher than controls only at 7 days. Our results indicate that nutritional status time-dependently affects the thyroid axis and appetite regulators, although no clear correlation between thyroid physiology and appetite regulators could be established. Our study helps to fill a knowledge gap in current fish endocrinological research on the effects of energy balance on thyroid metabolism and function.


Assuntos
Proteína Relacionada com Agouti/genética , Encéfalo/metabolismo , Carpa Dourada/fisiologia , Pró-Opiomelanocortina/genética , Animais , Regulação do Apetite , Ingestão de Alimentos , Metabolismo Energético , Jejum , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Estado Nutricional , Hormônios Tireóideos/sangue
5.
Front Endocrinol (Lausanne) ; 11: 596585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240222

RESUMO

In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.


Assuntos
Peixes/fisiologia , Metamorfose Biológica , Reprodução , Glândula Tireoide/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Glândula Tireoide/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA