Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 19940-19955, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737040

RESUMO

Fresh Wolffia globosa, the smallest flowering plant well-known for its favorable nutrient composition and rich content of bioactive compounds, was subjected to boiling, freeze-thawing, and mechanical crushing to reduce its excessive (95-96%) moisture level and consequent drying time. The resultant three wolffia matrixes were filtered through a plankton net to fractionate into the residue and the filtrate. The proximate composition, bioactive metabolites, antioxidant activity, and characterization of bioactive metabolites by LC-ESI-QTOF-MS/MS and Fourier transform infrared spectroscopy were made from oven-dried residues and filtrates. Among residues, crude protein (29.84%), crude lipid (5.77%), total carotenoids (TCC; 722.8 µg/g), and vitamin C (70.02 mg/100 g) were the highest (p < 0.05) for freeze-thawing against higher ash (7.99%), total phenolic content (TPC; 191.47 mg GAE g-1 dry weight), total flavonoid content (TFC; 91.54 mg QE g-1 dry weight), DPPH activity (47.46%), and ferric reducing antioxidant power (FRAP) activity (570.19 µmol FeSO4 equiv/mg) for the crushed counterpart and Chl-b in residues from boiling. No significant variation was evident in the total tannin content (TTC). Among filtrates, higher total phenolic content (773.29 mg GAE g-1 dry weight), TFC (392.77 mg QE g-1 dry weight), TTC (22.51 mg TAE g-1), and antioxidant activity as DPPH activity (66.46%) and FRAP (891.62 µmol FeSO4 equiv/mg) were evident for boiling, while that from crushing exhibited the highest TCC (1997.38 µg/g DM). LC-ESI-QTOF-MS/MS analysis identified 72 phenolic compounds with the maximum in residue (33) and filtrate (33) from freeze-thawing, followed by crushing (18 and 19) and boiling (14 and 13) in order, respectively. The results indicated that the predrying cell rupturing method significantly impacted quantitative, as well as qualitative compositions of residues and filtrates from fresh wolffia.

2.
Environ Sci Pollut Res Int ; 30(51): 110298-110311, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783989

RESUMO

In the present study, comprehensive research was executed to investigate the salient toxic effects of glyphosate herbicide in static water system by evaluating the haemato-biochemical profiles of Labio rohita. A challenge study against Aeromonas hydrophila was conducted to determine disease susceptibility of the fish, treated to varying concentrations of commercial-grade glyphosate herbicide. A static range finding bioassay and definitive test revealed that the 96-h LC50 value of glyphosate was 10.16 mg L-1. The experimental fish were subjected to three sub-lethal concentrations of 2.06, 1.03, and 0.63 mg l-1 for 28 days and changes were documented bi-fortnightly to study haemato-biochemical alterationsin the fish. Significantly (p < 0.05) low values in red blood corpuscles (RBC), hemoglobin (Hb), and hematocrit value (Hct) were documented. In contrast, a significant (p < 0.05) escalation in white blood corpuscles (WBC) was documented in comparison to the control. Biochemical and stress markers such as blood glucose, total protein, and alkaline phosphatase (ALP) were significantly (p < 0.05) low, whereas serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT) escalated significantly (p < 0.05). Chronic exposure to glyphosate, on the other hand, had the least effect on the Na+ and K+ ions. Further, a challenge assay against A. hydrophila at three sub-lethal glyphosate concentrations demonstrated a synergistic impact that reduced the fish survivability. The findings conclude that persistent low glyphosate concentrations in aquatic ecosystems show significant pathophysiological changes in L. rohita, with increased vulnerability to infections. Altogether, our findings indicate the need to further study the possible assessment for a sustainable bio-remediation technique, mitigation of the detrimental effects of glyphosate exposure in fish, and recommendation of an acceptable residue concentration of the glyphosate in aquatic ecosystem.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila , Ecossistema , Cyprinidae/metabolismo , Aspartato Aminotransferases/metabolismo , Glutamatos/metabolismo , Glifosato
3.
Artigo em Inglês | MEDLINE | ID: mdl-37523086

RESUMO

Seafoods are rich in untapped bioactive compounds that have the potential to provide novel ingredients for the development of commercial functional foods and pharmaceuticals. Unfortunately, a large portion of waste or discards is generated in commercial processing setups (50-80%), which is wasted or underutilized. These by-products are a rich source of novel and valuable biomolecules, including bioactive peptides, collagen and gelatin, oligosaccharides, fatty acids, enzymes, calcium, water-soluble minerals, vitamins, carotenoids, chitin, chitosan and biopolymers. These fish components may be used in the food, cosmetic, pharmaceutical, environmental, biomedical and other industries. Furthermore, they provide a viable source for the production of biofuels. As a result, the current review emphasizes the importance of effective by-product and discard reduction techniques that can provide practical and profitable solutions. Recognizing this, many initiatives have been initiated to effectively use them and generate income for the long-term sustainability of the environment and economic framework of the processing industry. This comprehensive review summarizes the current state of the art in the sustainable valorisation of seafood by-products for human consumption. The review can generate a better understanding of the techniques for seafood waste valorisation to accelerate the sector while providing significant benefits.

4.
J Sci Food Agric ; 103(11): 5288-5299, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37005347

RESUMO

BACKGROUND: The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS: The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION: The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.


Assuntos
Agave , Peixes-Gato , Animais , Inulina/química , Paladar , Emulsões/química , Fibras na Dieta
5.
Fish Shellfish Immunol ; 130: 520-529, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167295

RESUMO

The present study was conducted to evaluate the immunostimulatory effect of tea leaf extract (Camellia sinensis) on Labeo rohita and its resistance against Aeromonas hydrophila infection. The ethanolic extract of green tea (GTEE) was found to be the most potent as compared to other solvent extract which was used for further study. It was used to evaluate immune-biochemical response of L. rohita fingerlings, fed with tea leaf extract (control- 0.0%, 0.2% (T1), 0.4% (T2), 0.8% (T3) and 1% (T4) of GTEE kg-1 feed). Different biochemical parameters like glucose, ALP, GPT, GOT, and immunological parameters like lysozyme activity, NBT, anti-protease activity, myeloperoxidase activity, plasma protein, and immune relevant genes (IL-10, C3, Lysozyme G type and iNOS) expressions were carried out. The immunological parameters such as lysozyme activity, NBT and myeloperoxidase activity showed significantly high value once fed with GTEE incorporated diets. Significant up-regulation of immune genes indicated the enhancement of immune response at molecular level. The biochemical parameters were found to be significantly decreasing, indicating that the extract had hepato-protective effect and can help to overcome stress. The fish, fed with GTEE incorporated diets, showed resistance against A. hydrophila when compared with the control group. 0.2% GTEE showed the highest post-challenged survival (76.67%). From the present study, it is concluded that GTEE @ 0.2% can be used as potent immunostimulant as a sustainable alternative prophylactic and therapeutic agent in aquaculture.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Adjuvantes Imunológicos/farmacologia , Aeromonas hydrophila/fisiologia , Animais , Antioxidantes , Proteínas Sanguíneas/metabolismo , Perfilação da Expressão Gênica , Glucose , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade , Interleucina-10 , Muramidase , Peroxidase , Extratos Vegetais/farmacologia , Solventes , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA