Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(6): 1468-1477, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38601996

RESUMO

Acute exposure to hypoxia increases postural sway, but the underlying neurophysiological factors are unclear. Golgi tendon organs (GTOs), located within the musculotendinous junction (MTJ), provide inhibitory signals to plantar flexor muscles that are important for balance control; however, it is uncertain if GTO function is influenced by hypoxia. The aim of this study was to determine how normobaric hypoxia influences lower limb tendon-evoked inhibitory reflexes during upright stance. We hypothesized that tendon-evoked reflex area and duration would decrease during hypoxia, indicating less inhibition of postural muscles compared with normoxia. At baseline (BL; 0.21 fraction of inspired oxygen, FIO2) and at ∼2 (H2) and 4 (H4) h of normobaric hypoxia (0.11 FIO2) in a normobaric hypoxic chamber, 16 healthy participants received electrical musculotendinous stimulation (MTstim) to the MTJ of the left Achilles tendon. The MTstim was delivered as two sets of 50 stimuli while the participant stood on a force plate with their feet together. Tendon-evoked inhibitory reflexes were recorded from the surface electromyogram of the ipsilateral medial gastrocnemius, and center of pressure (CoP) variables were recorded from the force plate. Normobaric hypoxia increased CoP velocity (P ≤ 0.002) but not CoP standard deviation (P ≥ 0.12). Compared with BL, normobaric hypoxia reduced tendon-evoked inhibitory reflex area by 45% at H2 and 53% at H4 (P ≤ 0.002). In contrast, reflex duration was unchanged during hypoxia. The reduced inhibitory feedback from the GTO pathway could likely play a role in the increased postural sway observed during acute exposure to hypoxia.NEW & NOTEWORTHY The Ib pathway arising from the Golgi tendon organ provides inhibitory signals onto motor neuron pools that modifies force and, hence, postural control. Although hypoxia influences standing balance (increases sway), the underlying mechanisms have yet to be unraveled. Our study identified that tendon-evoked inhibition onto a plantar flexor motoneuron pool is reduced by acute exposure to normobaric hypoxia. This reduction of inhibition may contribute to the hypoxia-related increase in postural sway.


Assuntos
Tendão do Calcâneo , Hipóxia , Músculo Esquelético , Reflexo , Humanos , Masculino , Hipóxia/fisiopatologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/fisiopatologia , Adulto , Reflexo/fisiologia , Feminino , Músculo Esquelético/fisiologia , Adulto Jovem , Eletromiografia/métodos , Equilíbrio Postural/fisiologia , Estimulação Elétrica/métodos
2.
Muscle Nerve ; 70(1): 12-27, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38477416

RESUMO

The spinal cord facilitates communication between the brain and the body, containing intrinsic systems that work with lower motor neurons (LMNs) to manage movement. Spinal cord injuries (SCIs) can lead to partial paralysis and dysfunctions in muscles below the injury. While traditionally this paralysis has been attributed to disruptions in the corticospinal tract, a growing body of work demonstrates LMN damage is a factor. Motor units, comprising the LMN and the muscle fibers with which they connect, are essential for voluntary movement. Our understanding of their changes post-SCI is still emerging, but the health of motor units is vital, especially when considering innovative SCI treatments like nerve transfer surgery. This review seeks to collate current literature on how SCI impact motor units and explore neuromuscular clinical implications and treatment avenues. SCI reduced motor unit number estimates, and surviving motor units had impaired signal transmission at the neuromuscular junction, force-generating capacity, and excitability, which have the potential to recover chronically, yet the underlaying mechanisms are unclear. Furthermore, electrodiagnostic evaluations can aid in assessing the health lower and upper motor neurons, identify suitable targets for nerve transfer surgeries, and detect patients with time sensitive injuries. Lastly, many electrodiagnostic abnormalities occur in both chronic and acute SCI, yet factors contributing to these abnormalities are unknown. Future studies are required to determine how motor units adapt following SCI and the clinical implications of these adaptations.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Humanos , Neurônios Motores/fisiologia , Junção Neuromuscular/fisiopatologia , Animais , Músculo Esquelético/fisiopatologia
3.
Appl Physiol Nutr Metab ; 49(3): 293-305, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913527

RESUMO

There is growing evidence to support a role for the abductor hallucis (AH) in standing balance control; however, functional properties of the muscle that may provide more insight into AH's specific contribution to upright posture have yet to be characterized. This study was conducted to quantify functional neuromechanical properties of the AH and correlate the measures with standing balance variables. We quantified strength and voluntary activation during maximal voluntary isometric contractions of the great toe abductor in nine (3 females and 6 males) healthy, young participants. During electrically evoked twitch and tetanic contractions, we measured great toe abduction peak force and constructed a force-frequency curve. We also evaluated peak abduction force, contraction time (CT), half-relaxation time (HRT), rate of force development (RFD), and relaxation rate (RR) from twitch contractions evoked using doublet stimuli. Strength, VA, CT, HRT, RFD, and RR were correlated to centre of pressure standard deviation (COP SD) and velocity (COP VEL) variables of the traditional COP trace and its rambling and trembling components during single-legged stance. AH twitch properties (e.g., CT: 169.8 ± 32.3 ms; HRT: 124.1 ± 29.2 ms) and force-frequency curve were similar to other slow contractile muscles. Contractile speed related negatively with COP VEL, suggesting AH may be appropriate for slow, prolonged tasks such as ongoing postural balance control. Correlation coefficient outcomes for all variables were similar between rambling and trembling components. Our results provide further evidence for the importance of AH neuromechanical function for standing balance control, at least during a challenging single-legged posture.


Assuntos
, Músculo Esquelético , Masculino , Feminino , Humanos , Pé/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Postura/fisiologia , Equilíbrio Postural/fisiologia
4.
Exp Brain Res ; 241(11-12): 2683-2692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805648

RESUMO

Hypoxia increases postural sway compared to normoxia, but the underlying sensorimotor factors remain unclear. An important contributor to balance control is cutaneous feedback arising from the feet, which can be partially characterized by electrically evoking a reflex from a purely cutaneous nerve (i.e., sural) and sampling the subsequent motor activity of a muscle. The purpose of the present study was to determine how normobaric hypoxia influences sural nerve reflex parameters during a standing posture. It was hypothesized that normobaric hypoxia would reduce cutaneous reflex area compared to normoxia. Participants (n = 16; 5 females, 11 males) stood with their feet together while receiving two trials of 50 sural nerve stimulations (200-Hz, 5-pulse train, presented randomly every 3-6 s) at baseline (BL; normoxia), and at 2 (H2) and 4 (H4) h of normobaric hypoxia (~ 0.11 fraction of inspired oxygen in a hypoxic chamber). The sural nerve reflex was recorded using surface electromyography from the left medial gastrocnemius, and characterized by area and duration of the initial positive and negative peaks of the response. When normalized to pre-stimulus electromyography, the area of the peak-to-peak cutaneous reflex was not different than BL (p ≥ 0.14) for up to 4 h of normobaric hypoxia (BL: 0.26 ± 0.22, H2: 0.19 ± 0.19, H4: 0.22 ± 0.20 A.U.). Furthermore, the duration of the response was not different during hypoxia (BL: 73.2 ± 42.4; H2: 75.2 ± 47.0; H4: 77.6 ± 54.6 ms; p ≥ 0.13) than BL. Thus, reflexes arising from cutaneous afferents of the lateral border of the foot are resilient to at least 4 h of normobaric hypoxia.


Assuntos
Reflexo , Nervo Sural , Feminino , Humanos , Masculino , Estimulação Elétrica , Eletromiografia , Hipóxia , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Nervo Sural/fisiologia
5.
Eur J Appl Physiol ; 123(1): 65-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169737

RESUMO

PURPOSE: Foot sole cooling increases vestibular-evoked balance responses, but less is known about foot dorsum temperature alterations. The purpose was to determine whether decreasing cutaneous receptor sensitivity via foot dorsum cooling modulates the vestibular control of balance. METHODS: Eighteen participants (9 males; 9 females) stood quietly on a force plate with feet together, eyes closed, and head rotated leftward during 4, 90-s trials (2 control; 2 cooled) of continuous electrical vestibular stimulation (EVS). Icepacks placed on the dorsum of both feet for 15 min induced cooling and remained throughout the EVS trials. Monofilament testing was performed at multiple locations before and after cooling to determine tactile detection thresholds. T-type thermocouples monitored skin temperature over the tibialis anterior, soleus, foot dorsum and arch of the right leg. Vestibular-evoked balance responses were characterized using time (cumulant density) and frequency (coherence and gain) domain analyses to determine the relationship between the EVS input and motor output (anteroposterior force-AP force; right medial gastrocnemius electromyography-MG EMG). RESULTS: Skin temperature of the foot dorsum and arch decreased ~ 70 and 15%, respectively during cooling (p < 0.05), but was unaltered at other locations (p ≥ 0.10). Detection thresholds for the foot dorsum increased following cooling (p < 0.05). Surprisingly, cooling reduced EVS-AP force and EVS-MG EMG coherence and gain at multiple frequencies, and peak-to-peak amplitude compared to control (p < 0.05). CONCLUSION: Our results indicate that vestibular-driven balance responses are reduced following foot dorsum cooling, likely owing to alterations in cutaneous mechanoreceptor sensitivity and subsequent alterations in the transformation of vestibular cues for balance control.


Assuntos
Músculo Esquelético , Equilíbrio Postural , Masculino , Feminino , Humanos , Equilíbrio Postural/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Pé/fisiologia , Extremidade Inferior
6.
Eur J Appl Physiol ; 123(4): 821-832, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36484861

RESUMO

PURPOSE: It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS: At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION: Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Masculino , Humanos , Fibras Musculares Esqueléticas/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia , Torque , Eletromiografia
7.
Eur J Sport Sci ; 23(9): 1922-1931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35989687

RESUMO

Sleep deprivation (SD) is prevalent and impairs motor function; however, little is known about its effect on perceived and performance fatigability, especially in females. To examine the effects of 24 h of SD on these attributes of fatigue, nine females completed a 20-min isometric, sustained elbow flexion contraction, followed by 10 min of recovery. The superimposed twitch (SIT) elicited via transcranial magnetic stimulation (TMS) assessed supraspinal drive. Biceps brachii electromyographic data indicated neural excitability in response to stimulation over the motor cortex (motor evoked potential; MEP), corticospinal tract (cervicomedullary motor evoked potential; CMEP), and brachial plexus (maximal M-wave; Mmax). MEPs and CMEPs were recorded during a TMS-induced silent period. At baseline, ratings of perceived effort (RPE; 2.9 vs. 1.6) and fatigue (RPF; 6.9 vs. 2.9), were higher for SD than control. Across the 20-min contraction, RPE increased from 2.2 to 7.6, SIT and MEP/CMEP increased by 284 and 474%, respectively, whereas maximal voluntary isometric contraction (MVC) torque and CMEP/Mmax decreased by 26 and 57%, respectively. No differences were found across conditions for MVC, SIT, Mmax, CMEP/Mmax, or MEP/CMEP prior to, during, and after the fatiguing task. During recovery, RPE (4.9 vs. 3.4), RPF (7.6 vs. 2.8), and perception of task difficulty (5.5 vs. 4.5) were greater for SD than control. Acute SD does not appear to alter performance fatigability development and subsequent recovery; however, it increases perceptions of fatigue, effort, and task difficulty. Thus, the disconnect between perceived and actual neuromuscular capacity following a sustained, submaximal isometric task is exacerbated by SD.HighlightsSleep deprivation did not alter supraspinal drive or neural excitability during and after a 20-min submaximal elbow flexion contractionSleep deprivation increased perceived fatigue and perception of task difficultyThe disconnect between perceived and performance fatigability is exacerbated in a sleep-deprived state.


Assuntos
Músculo Esquelético , Privação do Sono , Humanos , Feminino , Eletromiografia , Estimulação Elétrica , Músculo Esquelético/fisiologia , Cotovelo/fisiologia , Contração Isométrica/fisiologia , Estimulação Magnética Transcraniana , Fadiga Muscular/fisiologia , Contração Muscular/fisiologia
8.
J Biomech ; 122: 110448, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905969

RESUMO

High-intensity eccentric exercise can lead to muscle damage and weakness. The 'repeated bout effect' (RBE) can attenuate these impairments when performing a subsequent bout. The influence of eccentric exercise-induced muscle damage on low-frequency force production is well-characterized; however, it is unclear how eccentric exercise and the RBE affect torque production across a range of stimulation frequencies (i.e., the torque-frequency relationship). We investigated the influence of an initial (Bout 1) and repeated bout (Bout 2) of eccentric exercise on the elbow flexor torque-frequency relationship. Eleven males completed two bouts of high-intensity eccentric elbow flexions, 4 weeks apart. Torque-frequency relationships were constructed at baseline and 0.5, 24, 48, 72, 96, and 168 h following both bouts via percutaneous stimulation at 1, 6, 10, 20, 30, 40, 50, and 100 Hz. Serum creatine kinase activity, self-reported muscle soreness, and isometric maximum voluntary contraction torque indirectly inferred the presence of muscle damage following Bout 1, and attenuation of muscle damage following Bout 2. Torque amplitude at all stimulation frequencies was impaired 30 min following eccentric exercise, however, torque at lower (1-10 Hz) and higher frequencies (40-100 Hz) recovered within 24 h while torque across the middle frequency range (20-30 Hz) recovered by 48 h. No between-bout differences were detected in absolute or normalized torque at any stimulation frequency, indicating no protective RBE on the elbow flexor torque-frequency relationship.


Assuntos
Contração Isométrica , Músculo Esquelético , Exercício Físico , Humanos , Masculino , Contração Muscular , Mialgia , Torque
9.
Eur J Appl Physiol ; 121(4): 993-1008, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33484334

RESUMO

PURPOSE: Standing balance control is important for everyday function and often goes unnoticed until impairments appear. Presently, more than 200 million people live at altitudes > 2500 m above sea level, and many others work at or travel to these elevations. Thus, it is important to understand how hypoxia alters balance owing to implications for occupations and travelers. Herein, the influence of normobaric and hypobaric hypoxia on standing balance control is reviewed and summarized. As postural control relies on the integration of sensorimotor signals, the potential hypoxic-sensitive neurophysiological factors that contribute to balance impairments are also reviewed. Specifically, we examine how hypoxia impairs visual, vestibular, and proprioceptive cues, and their integration within subcortical or cortical areas. METHODS: This systematic review included a literature search conducted via multiple databases with keywords related to postural balance, hypoxia, and altitude. Articles (n = 13) were included if they met distinct criteria. RESULTS: Compared to normoxia, normobaric hypoxia worsened parameters of standing balance by 2-10% and up to 83 and 240% in hypobaric hypoxia (high-altitude and lab-based, respectively). Although balance was only disrupted during normobaric hypoxia at FIO2 < ~ 0.15, impairments consistently occurred during hypobaric hypoxia at altitudes > 1524 m (~ FIO2 < 0.18). CONCLUSION: Hypoxia, especially hypobaric, impairs standing balance. The mechanisms underpinning postural decrements likely involve alterations to processing and integration of sensorimotor signals within subcortical or cortical structures involving visual, vestibular, and proprioceptive pathways and subsequent motor commands that direct postural adjustments. Future studies are required to determine the sensorimotor factors that may influence balance control in hypoxia.


Assuntos
Hipóxia/fisiopatologia , Equilíbrio Postural , Adulto , Retroalimentação Fisiológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/fisiopatologia , Posição Ortostática
10.
Appl Physiol Nutr Metab ; 46(5): 461-472, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33125854

RESUMO

High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.


Assuntos
Adaptação Fisiológica , Contração Muscular , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Mialgia/fisiopatologia , Adulto , Creatina Quinase/sangue , Cotovelo/fisiologia , Humanos , Contração Isométrica , Masculino , Músculo Esquelético/enzimologia , Mialgia/enzimologia , Autorrelato , Torque , Adulto Jovem
11.
Med Sci Sports Exerc ; 52(4): 835-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31688646

RESUMO

Residual torque depression (rTD) is the decrease in isometric (ISO) torque after active shortening of skeletal muscle compared with a purely ISO contraction performed at the same muscle length and level of activation. Performance fatigability is defined as any exercise-induced reduction in voluntary force or power, and females are typically more fatigue resistant than males at low-intensity ISO contractions. PURPOSE: This study investigated performance fatigability in males and females during ISO contractions and ISO contractions after active shortening (rTD). METHODS: Fourteen females (22 ± 2 yr) and 14 males (23 ± 2 yr) performed three baseline maximal voluntary contractions (MVCs) of the dorsiflexors. The MVCs were used to determine a 30% submaximal torque target, which participants matched as steadily as possible until task failure. The ISO fatigue task was performed at 10° plantar flexion. In the rTD session, the participants' ankle was rotated from 40° to 10° plantar flexion before performing the same fatigue task. MVCs were performed immediately after task failure, 30 s, and 1, 2, 3, 4, 5, 10, 20, and 30 min after task failure to track recovery. RESULTS: The baseline MVC torque amplitude for males (32.1 ± 6.6 N·m) was 31% greater than that for females (22.3 ± 3.1 N·m; P < 0.001, ηp = 0.490). Females' time to task failure was 44% longer than that of males in the ISO state (P = 0.032, ηp = 0.164). However, there was no sex difference in the rTD state (P = 0.142). CONCLUSION: It seems that the sex differences in fatigue resistance observed in a low-intensity ISO task are abolished in the ISO state after an active shortening contraction.


Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Caracteres Sexuais , Potenciais de Ação , Adulto , Eletromiografia , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Análise e Desempenho de Tarefas , Torque , Adulto Jovem
12.
Appl Physiol Nutr Metab ; 44(3): 301-308, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30189152

RESUMO

Muscle length and preceding activity independently influence rate of torque development (RTD) and electromechanical delay (EMD), but it is unclear whether these parameters interact to optimize RTD and EMD. The purpose of this study was to determine the influence of muscle length and preceding activity on RTD and EMD during voluntary and electrically stimulated (e-stim) contractions. Participants (n = 17, males, 24 ± 3 years) performed isometric knee extensions on a dynamometer. Explosive maximal contractions were performed at 2 knee angles (35° and 100° referenced to a 0° straight leg) without preceding activity (unloaded, UNL) and with preceding activities of 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) torque. Absolute and normalized voluntary RTD were slowed with preceding activities ≥40% MVC for long muscle lengths and all preceding activities for short muscle lengths compared with UNL (p < 0.001). Absolute and normalized e-stim RTD were slower with preceding activities ≥40% MVC compared with UNL (p < 0.001) for both muscle lengths. Normalized RTD was faster at short muscle lengths than at long muscle lengths (p < 0.001) for e-stim (∼50%) and voluntary (∼32%) UNL contractions, but this effect was not present for absolute RTD. Muscle length did not affect EMD (p > 0.05). EMD was shorter at 80% MVC compared with UNL (∼35%; p < 0.001) for both muscle lengths during voluntary but not e-stim contractions. While RTD is limited by preceding activity at both muscle lengths, long muscle lengths require greater preceding activity to limit RTD than short muscle lengths, which indicates long muscle lengths may offer a "protective effect" for RTD against preceding activity.


Assuntos
Estimulação Elétrica , Contração Muscular , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Humanos , Masculino , Dinamômetro de Força Muscular , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA