Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
2.
BMC Med Res Methodol ; 24(1): 91, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641771

RESUMO

Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) conducted with non-randomized exposures, published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which can be considered one of the most valuable sources of evidence for health policy.


Assuntos
Medicina , Projetos de Pesquisa , Humanos , Lista de Checagem
4.
J Comp Eff Res ; 13(2): e230089, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38261336

RESUMO

Aim: Comparative effectiveness research using real-world data often involves pairwise propensity score matching to adjust for confounding bias. We show that corresponding treatment effect estimates may have limited external validity, and propose two visualization tools to clarify the target estimand. Materials & methods: We conduct a simulation study to demonstrate, with bivariate ellipses and joy plots, that differences in covariate distributions across treatment groups may affect the external validity of treatment effect estimates. We showcase how these visualization tools can facilitate the interpretation of target estimands in a case study comparing the effectiveness of teriflunomide (TERI), dimethyl fumarate (DMF) and natalizumab (NAT) on manual dexterity in patients with multiple sclerosis. Results: In the simulation study, estimates of the treatment effect greatly differed depending on the target population. For example, when comparing treatment B with C, the estimated treatment effect (and respective standard error) varied from -0.27 (0.03) to -0.37 (0.04) in the type of patients initially receiving treatment B and C, respectively. Visualization of the matched samples revealed that covariate distributions vary for each comparison and cannot be used to target one common treatment effect for the three treatment comparisons. In the case study, the bivariate distribution of age and disease duration varied across the population of patients receiving TERI, DMF or NAT. Although results suggest that DMF and NAT improve manual dexterity at 1 year compared with TERI, the effectiveness of DMF versus NAT differs depending on which target estimand is used. Conclusion: Visualization tools may help to clarify the target population in comparative effectiveness studies and resolve ambiguity about the interpretation of estimated treatment effects.


Assuntos
Crotonatos , Hidroxibutiratos , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Nitrilas , Toluidinas , Humanos , Imunossupressores , Cloridrato de Fingolimode , Fumarato de Dimetilo/efeitos adversos , Esclerose Múltipla/tratamento farmacológico
6.
Stat Med ; 43(3): 514-533, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38073512

RESUMO

Missing data is a common problem in medical research, and is commonly addressed using multiple imputation. Although traditional imputation methods allow for valid statistical inference when data are missing at random (MAR), their implementation is problematic when the presence of missingness depends on unobserved variables, that is, the data are missing not at random (MNAR). Unfortunately, this MNAR situation is rather common, in observational studies, registries and other sources of real-world data. While several imputation methods have been proposed for addressing individual studies when data are MNAR, their application and validity in large datasets with multilevel structure remains unclear. We therefore explored the consequence of MNAR data in hierarchical data in-depth, and proposed a novel multilevel imputation method for common missing patterns in clustered datasets. This method is based on the principles of Heckman selection models and adopts a two-stage meta-analysis approach to impute binary and continuous variables that may be outcomes or predictors and that are systematically or sporadically missing. After evaluating the proposed imputation model in simulated scenarios, we illustrate it use in a cross-sectional community survey to estimate the prevalence of malaria parasitemia in children aged 2-10 years in five regions in Uganda.


Assuntos
Pesquisa Biomédica , Criança , Humanos , Estudos Transversais , Uganda/epidemiologia
7.
J Clin Epidemiol ; 165: 111206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925059

RESUMO

OBJECTIVES: Risk of bias assessments are important in meta-analyses of both aggregate and individual participant data (IPD). There is limited evidence on whether and how risk of bias of included studies or datasets in IPD meta-analyses (IPDMAs) is assessed. We review how risk of bias is currently assessed, reported, and incorporated in IPDMAs of test accuracy and clinical prediction model studies and provide recommendations for improvement. STUDY DESIGN AND SETTING: We searched PubMed (January 2018-May 2020) to identify IPDMAs of test accuracy and prediction models, then elicited whether each IPDMA assessed risk of bias of included studies and, if so, how assessments were reported and subsequently incorporated into the IPDMAs. RESULTS: Forty-nine IPDMAs were included. Nineteen of 27 (70%) test accuracy IPDMAs assessed risk of bias, compared to 5 of 22 (23%) prediction model IPDMAs. Seventeen of 19 (89%) test accuracy IPDMAs used Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), but no tool was used consistently among prediction model IPDMAs. Of IPDMAs assessing risk of bias, 7 (37%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided details on the information sources (e.g., the original manuscript, IPD, primary investigators) used to inform judgments, and 4 (21%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided information or whether assessments were done before or after obtaining the IPD of the included studies or datasets. Of all included IPDMAs, only seven test accuracy IPDMAs (26%) and one prediction model IPDMA (5%) incorporated risk of bias assessments into their meta-analyses. For future IPDMA projects, we provide guidance on how to adapt tools such as Prediction model Risk Of Bias ASsessment Tool (for prediction models) and QUADAS-2 (for test accuracy) to assess risk of bias of included primary studies and their IPD. CONCLUSION: Risk of bias assessments and their reporting need to be improved in IPDMAs of test accuracy and, especially, prediction model studies. Using recommended tools, both before and after IPD are obtained, will address this.


Assuntos
Confiabilidade dos Dados , Modelos Estatísticos , Humanos , Prognóstico , Viés
8.
Am J Epidemiol ; 193(2): 377-388, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37823269

RESUMO

Propensity score analysis is a common approach to addressing confounding in nonrandomized studies. Its implementation, however, requires important assumptions (e.g., positivity). The disease risk score (DRS) is an alternative confounding score that can relax some of these assumptions. Like the propensity score, the DRS summarizes multiple confounders into a single score, on which conditioning by matching allows the estimation of causal effects. However, matching relies on arbitrary choices for pruning out data (e.g., matching ratio, algorithm, and caliper width) and may be computationally demanding. Alternatively, weighting methods, common in propensity score analysis, are easy to implement and may entail fewer choices, yet none have been developed for the DRS. Here we present 2 weighting approaches: One derives directly from inverse probability weighting; the other, named target distribution weighting, relates to importance sampling. We empirically show that inverse probability weighting and target distribution weighting display performance comparable to matching techniques in terms of bias but outperform them in terms of efficiency (mean squared error) and computational speed (up to >870 times faster in an illustrative study). We illustrate implementation of the methods in 2 case studies where we investigate placebo treatments for multiple sclerosis and administration of aspirin in stroke patients.


Assuntos
Acidente Vascular Cerebral , Humanos , Pontuação de Propensão , Fatores de Risco , Viés , Causalidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Simulação por Computador
9.
Res Sq ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693428

RESUMO

Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which can be considered one of the most valuable sources of evidence for health policy.

10.
J Comp Eff Res ; 12(8): e220132, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37515491

RESUMO

Aim: The presence of two or more publications that report on overlapping patient cohorts poses a challenge for quantitatively synthesizing real-world evidence (RWE) studies. Thus, we evaluated eight approaches for handling such related publications in network meta-analyses (NMA) of RWE studies. Methods: Bayesian NMAs were conducted to estimate the annualized relapse rate (ARR) of disease-modifying therapies in multiple sclerosis. The NMA explored the impact of hierarchically selecting one pivotal study from related publications versus including all of them while adjusting for correlations. Results: When selecting one pivotal study from related publications, the ARR ratios were mostly similar regardless of the pivotal study selected. When including all related publications, there were shifts in the point estimates and the statistical significance. Conclusion: An a priori hierarchy should guide the selection among related publications in NMAs of RWE. Sensitivity analyses modifying the hierarchy should be considered for networks with few or small studies.


Assuntos
Esclerose Múltipla , Humanos , Teorema de Bayes , Metanálise em Rede , Recidiva
11.
Stat Methods Med Res ; 32(7): 1284-1299, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37303120

RESUMO

Real-world data sources offer opportunities to compare the effectiveness of treatments in practical clinical settings. However, relevant outcomes are often recorded selectively and collected at irregular measurement times. It is therefore common to convert the available visits to a standardized schedule with equally spaced visits. Although more advanced imputation methods exist, they are not designed to recover longitudinal outcome trajectories and typically assume that missingness is non-informative. We, therefore, propose an extension of multilevel multiple imputation methods to facilitate the analysis of real-world outcome data that is collected at irregular observation times. We illustrate multilevel multiple imputation in a case study evaluating two disease-modifying therapies for multiple sclerosis in terms of time to confirmed disability progression. This survival outcome is derived from repeated measurements of the Expanded Disability Status Scale, which is collected when patients come to the healthcare center for a clinical visit and for which longitudinal trajectories can be estimated. Subsequently, we perform a simulation study to compare the performance of multilevel multiple imputation to commonly used single imputation methods. Results indicate that multilevel multiple imputation leads to less biased treatment effect estimates and improves the coverage of confidence intervals, even when outcomes are missing not at random.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Projetos de Pesquisa , Interpretação Estatística de Dados , Simulação por Computador
12.
Stat Med ; 42(19): 3508-3528, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37311563

RESUMO

External validation of the discriminative ability of prediction models is of key importance. However, the interpretation of such evaluations is challenging, as the ability to discriminate depends on both the sample characteristics (ie, case-mix) and the generalizability of predictor coefficients, but most discrimination indices do not provide any insight into their respective contributions. To disentangle differences in discriminative ability across external validation samples due to a lack of model generalizability from differences in sample characteristics, we propose propensity-weighted measures of discrimination. These weighted metrics, which are derived from propensity scores for sample membership, are standardized for case-mix differences between the model development and validation samples, allowing for a fair comparison of discriminative ability in terms of model characteristics in a target population of interest. We illustrate our methods with the validation of eight prediction models for deep vein thrombosis in 12 external validation data sets and assess our methods in a simulation study. In the illustrative example, propensity score standardization reduced between-study heterogeneity of discrimination, indicating that between-study variability was partially attributable to case-mix. The simulation study showed that only flexible propensity-score methods (allowing for non-linear effects) produced unbiased estimates of model discrimination in the target population, and only when the positivity assumption was met. Propensity score-based standardization may facilitate the interpretation of (heterogeneity in) discriminative ability of a prediction model as observed across multiple studies, and may guide model updating strategies for a particular target population. Careful propensity score modeling with attention for non-linear relations is recommended.


Assuntos
Benchmarking , Grupos Diagnósticos Relacionados , Humanos , Simulação por Computador
14.
Lancet Child Adolesc Health ; 7(5): 336-346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924781

RESUMO

BACKGROUND: Many children with pulmonary tuberculosis remain undiagnosed and untreated with related high morbidity and mortality. Recent advances in childhood tuberculosis algorithm development have incorporated prediction modelling, but studies so far have been small and localised, with limited generalisability. We aimed to evaluate the performance of currently used diagnostic algorithms and to use prediction modelling to develop evidence-based algorithms to assist in tuberculosis treatment decision making for children presenting to primary health-care centres. METHODS: For this meta-analysis, we identified individual participant data from a WHO public call for data on the management of tuberculosis in children and adolescents and referral from childhood tuberculosis experts. We included studies that prospectively recruited consecutive participants younger than 10 years attending health-care centres in countries with a high tuberculosis incidence for clinical evaluation of pulmonary tuberculosis. We collated individual participant data including clinical, bacteriological, and radiological information and a standardised reference classification of pulmonary tuberculosis. Using this dataset, we first retrospectively evaluated the performance of several existing treatment-decision algorithms. We then used the data to develop two multivariable prediction models that included features used in clinical evaluation of pulmonary tuberculosis-one with chest x-ray features and one without-and we investigated each model's generalisability using internal-external cross-validation. The parameter coefficient estimates of the two models were scaled into two scoring systems to classify tuberculosis with a prespecified sensitivity target. The two scoring systems were used to develop two pragmatic, treatment-decision algorithms for use in primary health-care settings. FINDINGS: Of 4718 children from 13 studies from 12 countries, 1811 (38·4%) were classified as having pulmonary tuberculosis: 541 (29·9%) bacteriologically confirmed and 1270 (70·1%) unconfirmed. Existing treatment-decision algorithms had highly variable diagnostic performance. The scoring system derived from the prediction model that included clinical features and features from chest x-ray had a combined sensitivity of 0·86 [95% CI 0·68-0·94] and specificity of 0·37 [0·15-0·66] against a composite reference standard. The scoring system derived from the model that included only clinical features had a combined sensitivity of 0·84 [95% CI 0·66-0·93] and specificity of 0·30 [0·13-0·56] against a composite reference standard. The scoring system from each model was placed after triage steps, including assessment of illness acuity and risk of poor tuberculosis-related outcomes, to develop treatment-decision algorithms. INTERPRETATION: We adopted an evidence-based approach to develop pragmatic algorithms to guide tuberculosis treatment decisions in children, irrespective of the resources locally available. This approach will empower health workers in primary health-care settings with high tuberculosis incidence and limited resources to initiate tuberculosis treatment in children to improve access to care and reduce tuberculosis-related mortality. These algorithms have been included in the operational handbook accompanying the latest WHO guidelines on the management of tuberculosis in children and adolescents. Future prospective evaluation of algorithms, including those developed in this work, is necessary to investigate clinical performance. FUNDING: WHO, US National Institutes of Health.


Assuntos
Tuberculose Pulmonar , Tuberculose , Estados Unidos , Adolescente , Humanos , Criança , Estudos Retrospectivos , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Triagem , Algoritmos
19.
Stat Med ; 42(8): 1188-1206, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36700492

RESUMO

When data are available from individual patients receiving either a treatment or a control intervention in a randomized trial, various statistical and machine learning methods can be used to develop models for predicting future outcomes under the two conditions, and thus to predict treatment effect at the patient level. These predictions can subsequently guide personalized treatment choices. Although several methods for validating prediction models are available, little attention has been given to measuring the performance of predictions of personalized treatment effect. In this article, we propose a range of measures that can be used to this end. We start by defining two dimensions of model accuracy for treatment effects, for a single outcome: discrimination for benefit and calibration for benefit. We then amalgamate these two dimensions into an additional concept, decision accuracy, which quantifies the model's ability to identify patients for whom the benefit from treatment exceeds a given threshold. Subsequently, we propose a series of performance measures related to these dimensions and discuss estimating procedures, focusing on randomized data. Our methods are applicable for continuous or binary outcomes, for any type of prediction model, as long as it uses baseline covariates to predict outcomes under treatment and control. We illustrate all methods using two simulated datasets and a real dataset from a trial in depression. We implement all methods in the R package predieval. Results suggest that the proposed measures can be useful in evaluating and comparing the performance of competing models in predicting individualized treatment effect.


Assuntos
Modelos Estatísticos , Medicina de Precisão , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Resultado do Tratamento , Regras de Decisão Clínica
20.
Res Synth Methods ; 14(2): 193-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36200133

RESUMO

A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate unbiased estimation of adjusted and unadjusted exposure-outcome associations and between-study heterogeneity in IPD-MA, where the extent and nature of exposure misclassification may vary across studies. We present Bayesian methods that allow misclassification of binary exposure variables to depend on study- and participant-level characteristics. In an example of the differential diagnosis of dengue using two variables, where the gold standard measurement for the exposure variable was unavailable for some studies which only measured a surrogate prone to misclassification, our methods yielded more accurate estimates than analyses naive with regard to misclassification or based on gold standard measurements alone. In a simulation study, the evaluated misclassification model yielded valid estimates of the exposure-outcome association, and was more accurate than analyses restricted to gold standard measurements. Our proposed framework can appropriately account for the presence of binary exposure misclassification in IPD-MA. It requires that some studies supply IPD for the surrogate and gold standard exposure, and allows misclassification to follow a random effects distribution across studies conditional on observed covariates (and outcome). The proposed methods are most beneficial when few large studies that measured the gold standard are available, and when misclassification is frequent.


Assuntos
Teorema de Bayes , Humanos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA