RESUMO
The rapid evolution of SARS-CoV-2 has fueled its global proliferation since its discovery in 2019, with several notable variants having been responsible for increases in cases of coronavirus disease 2019 (COVID-19). Analyses of codon bias and usage in these variants between phylogenetic clades or lineages may grant insights into the evolution of SARS-CoV-2 and identify target codons indicative of evolutionary or mutative trends that may prove useful in tracking or defending oneself against emerging strains. We processed a cohort of 120 SARS-CoV-2 genome sequences through a statistical and bioinformatic pipeline to identify codons presenting evidence of selective pressure as well as codon coevolution. We report the identification of two codon sites in the orf8 and N genes demonstrating such evidence with real-world impacts on pathogenicity and transmissivity.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Filogenia , Genoma Viral , Genômica , CódonRESUMO
H1N1 influenza A virus is a respiratory pathogen that undergoes antigenic shift and antigenic drift to improve viral fitness. Tracking the evolutionary trends of H1N1 aids with the current detection and the future response to new viral strains as they emerge. Here, we characterize antigenic drift events observed in the hemagglutinin (HA) sequence of the pandemic H1N1 lineage from 2015-2019. We observed the substitutions S200P, K147N, and P154S, together with other mutations in structural, functional, and/or epitope regions in 2015-2019 HA protein sequences from the Mountain West region of the United States, the larger United States, Europe, and other Northern Hemisphere countries. We reconstructed multiple phylogenetic trees to track the relationships and spread of these mutations and tested for evidence of selection pressure on HA. We found that the prevalence of amino acid substitutions at positions 147, 154, 159, 200, and 233 significantly changed throughout the studied geographical regions between 2015 and 2019. We also found evidence of coevolution among a subset of these amino acid substitutions. The results from this study could be relevant for future epidemiological tracking and vaccine prediction efforts. Similar analyses in the future could identify additional sequence changes that could affect the pathogenicity and/or infectivity of this virus in its human host.