Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(4): 110868, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38795738

RESUMO

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Assuntos
Peixes-Gato , DNA Satélite , Hibridização Genética , Meiose , Animais , Peixes-Gato/genética , Masculino , DNA Satélite/genética , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Genoma , População do Norte da África
2.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589507

RESUMO

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Assuntos
Cipriniformes , Triploidia , Animais , Feminino , Masculino , Tetraploidia , Gametogênese , Haploidia , Cipriniformes/genética
3.
Cytogenet Genome Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452741

RESUMO

Backgound The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals, and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. Summary Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. Key messages In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.

4.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015654

RESUMO

Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P. perezi genomes and it lives with a host species P. perezi (P-G system). Yet it is unknown, whether non-Mendelian inheritance is fully maintained in such populations. In this study, we characterize P. perezi and P. grafi somatic karyotypes by using comparative genomic hybridization, genomic in situ hybridization, fluorescent in situ hybridization, and actinomycin D-DAPI. Here, we show the homeology of P. perezi and P. grafi somatic karyotypes to other Pelophylax taxa with 2n = 26 and equal contribution of ridibundus and perezi chromosomes in P. grafi which supports F1 hybrid genome constitution as well as a hemiclonal genome inheritance. We show that ridibundus chromosomes have larger regions of interstitial (TTAGGG)n repeats flanking the nucleolus organizing region on chromosome no. 10 and a high quantity of AT pairs in the centromeric regions. In P. perezi, we found species-specific sequences in metaphase chromosomes and marker structures in lampbrush chromosomes. Pericentromeric RrS1 repeat sequence was present in perezi and ridibundus chromosomes, but the blocks were stronger in ridibundus. Various cytogenetic techniques applied to the P-G system provide genome discrimination between ridibundus and perezi chromosomal sets. They could be used in studies of germ-line cells to explain patterns of clonal gametogenesis in P. grafi and broaden the knowledge about reproductive strategies in hybrid animals.


Assuntos
Centrômero , Ranidae , Animais , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Ranidae/genética , Centrômero/genética , Cariotipagem
5.
Chromosoma ; 132(4): 329-342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38001396

RESUMO

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.


Assuntos
Coloração Cromossômica , Ranidae , Animais , Rana esculenta/genética , Ranidae/genética , Cariotipagem , Anuros/genética , Cariótipo
6.
Elife ; 122023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930936

RESUMO

Asexual reproduction can be triggered by interspecific hybridization, but its emergence is supposedly rare, relying on exceptional combinations of suitable genomes. To examine how genomic and karyotype divergence between parental lineages affect the incidence of asexual gametogenesis, we experimentally hybridized fishes (Cobitidae) across a broad phylogenetic spectrum, assessed by whole exome data. Gametogenic pathways generally followed a continuum from sexual reproduction in hybrids between closely related evolutionary lineages to sterile or inviable crosses between distant lineages. However, most crosses resulted in a combination of sterile males and asexually reproducing females. Their gametes usually experienced problems in chromosome pairing, but females also produced a certain proportion of oocytes with premeiotically duplicated genomes, enabling their development into clonal eggs. Interspecific hybridization may thus commonly affect cell cycles in a specific way, allowing the formation of unreduced oocytes. The emergence of asexual gametogenesis appears tightly linked to hybrid sterility and constitutes an inherent part of the extended speciation continuum.


Assuntos
Infertilidade , Reprodução Assexuada , Feminino , Masculino , Humanos , Filogenia , Cariótipo , Reprodução Assexuada/genética , Hibridização Genética
7.
Chromosome Res ; 30(4): 443-457, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459298

RESUMO

Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.


Assuntos
Poecilia , Animais , Feminino , Masculino , Poecilia/genética , Taiwan , Sêmen , Transcriptoma , Meiose
8.
Front Cell Dev Biol ; 10: 1008506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313575

RESUMO

Hybridogenesis is a hemiclonal reproductive strategy in diploid and triploid hybrids. Our study model is a frog P. esculentus (diploid RL and triploids RLL and RRL), a natural hybrid between P. lessonae (LL) and P. ridibundus (RR). Hybridogenesis relies on elimination of one genome (L or R) from gonocytes (G) in tadpole gonads during prespermatogenesis, but not from spermatogonial stem cells (SSCs) in adults. Here we provide the first comprehensive study of testis morphology combined with chromosome composition in the full spectrum of spermatogenic cells. Using genomic in situ hybridization (GISH) and FISH we determined genomes in metaphase plates and interphase nuclei in Gs and SSCs. We traced genomic composition of SSCs, spermatocytes and spermatozoa in individual adult males that were crossed with females of the parental species and gave progeny. Degenerating gonocytes (24%-39%) and SSCs (18%-20%) led to partial sterility of juvenile and adult gonads. We conclude that elimination and endoreplication not properly completed during prespermatogenesis may be halted when gonocytes become dormant in juveniles. After resumption of mitotic divisions by SSCs in adults, these 20% of cells with successful genome elimination and endoreplication continue spermatogenesis, while in about 80% spermatogenesis is deficient. Majority of abnormal cells are eliminated by cell death, however some of them give rise to aneuploid spermatocytes and spermatozoa which shows that hybridogenesis is a wasteful process.

9.
PeerJ ; 10: e13957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032956

RESUMO

Interspecific hybridization can disrupt canonical gametogenic pathways, leading to the emergence of clonal and hemiclonal organisms. Such gametogenic alterations usually include genome endoreplication and/or premeiotic elimination of one of the parental genomes. The hybrid frog Pelophylax esculentus exploits genome endoreplication and genome elimination to produce haploid gametes with chromosomes of only one parental species. To reproduce, hybrids coexist with one of the parental species and form specific population systems. Here, we investigated the mechanism of spermatogenesis in diploid P. esculentus from sympatric populations of P. ridibundus using fluorescent in situ hybridization. We found that the genome composition and ploidy of germ cells, meiotic cells, and spermatids vary among P. esculentus individuals. The spermatogenic patterns observed in various hybrid males suggest the occurrence of at least six diverse germ cell populations, each with a specific premeiotic genome elimination and endoreplication pathway. Besides co-occurring aberrant cells detected during meiosis and gamete aneuploidy, alterations in genome duplication and endoreplication have led to either haploid or diploid sperm production. Diploid P. esculentus males from mixed populations of P. ridibundus rarely follow classical hybridogenesis. Instead, hybrid males simultaneously produce gametes with different genome compositions and ploidy levels. The persistence of the studied mixed populations highly relies on gametes containing a genome of the other parental species, P. lessonae.


Assuntos
Anuros , Gametogênese , Animais , Humanos , Masculino , Hibridização in Situ Fluorescente , Sêmen , Ucrânia
10.
PLoS One ; 17(7): e0268574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793279

RESUMO

An intriguing outcome of hybridisation is the emergence of clonally and hemiclonally reproducing hybrids, that can sustain, reproduce, and lead to the emergence of polyploid forms. However, the maintenance of diploid and polyploid hybrid complexes in natural populations remains unresolved. We selected water frogs from the Pelophylax esculentus complex to study how diploid and triploid hybrids, which reproduce hemiclonally via hybridogenesis, are maintained in natural populations. During gametogenesis in diploid hybrids, one of the parental genomes is eliminated, and the remaining genome is endoreplicated. In triploid hybrids, the single-copy genome is typically eliminated, while genome endoreplication does not occur. To investigate how diploid and triploid hybrid frogs reproduce in populations without parental species, we crossed these hybrid animals from two separate pure hybrid populations located in Poland. Using cytogenetic analysis of tadpoles that emerged from the crosses, we established which gametes were produced by parental hybrids. The majority of hybrid females and hybrid males produced one type of gamete with the P. ridibundus genome. However, in both studied populations, approximately half of the diploid and triploid hybrids simultaneously produced gametes with different genome compositions and ploidy levels, specifically, the P. ridibundus and P. lessonae genomes, as well as diploid gametes with genomes of both parental species. Triploid hybrid males and females mostly produced haploid gametes with the P. lessonae genome; however, gametes with the P. ridibundus genome have also been observed. These results suggest that not all hybrids follow the classical hybridogenetic reproduction program and reveal a significant level of alterations in the gametogenesis pathways. In addition, we found a variable survival rate of particular progeny genotypes when we crossed hybrid females with different males suggesting the important role of postzygotic barriers on the maintenance of pure hybrid systems. We suggest that the observed variability in produced gametes and the different survival rate of the progeny with certain genotypes is crucial for the existence of pure hybrid systems.


Assuntos
Diploide , Triploidia , Animais , Feminino , Genótipo , Haploidia , Masculino , Água
11.
Biol Reprod ; 107(2): 446-457, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35416937

RESUMO

Interspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid's reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid's gonial cells or whether it is regulated by the surrounding gonadal tissue. We investigated gametogenesis in the Cobitis taenia hybrid complex, which involves sexually reproducing species (Cobitis elongatoides and C. taenia) as well as their hybrids, where females reproduce clonally via PMER while males are sterile. We transplanted spermatogonial stem cells (SSCs) from C. elongatoides and triploid hybrid males into embryos of sexual species and of asexual hybrid females, respectively, and observed their development in an allospecific gonadal environment. Sexual SSCs underwent regular meiosis and produced normally reduced gametes when transplanted into clonal females. On the other hand, the hybrid's SSCs lead to sterility when transplanted into sexual males but maintained their ability to undergo asexual development (PMER) and production of clonal eggs, when transplanted into sexual females. This suggests that asexual gametogenesis is under complex control when somatic gonadal tissue indirectly affects the execution of asexual development by determining the sexual differentiation of stem cells and once such cells develop to female phenotypes, hybrid germ cells trigger the PMER from their intrinsic signals.


Assuntos
Cipriniformes , Diferenciação Sexual , Animais , Cipriniformes/genética , Diploide , Feminino , Gametogênese , Células Germinativas , Masculino
12.
Chromosoma ; 131(1-2): 77-86, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35389062

RESUMO

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.


Assuntos
Tentilhões , Passeriformes , Animais , Cromossomos/genética , Feminino , Tentilhões/genética , Células Germinativas , Masculino , Passeriformes/genética
13.
Development ; 149(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388415

RESUMO

Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.


Assuntos
Lagartos , Animais , Diploide , Endorreduplicação , Lagartos/genética , Partenogênese/genética , Triploidia
14.
Biol Rev Camb Philos Soc ; 97(1): 195-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542224

RESUMO

Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.


Assuntos
Cromatina , Eucariotos , Animais , DNA/genética , Eucariotos/genética , Genoma , Mamíferos/genética , Cromossomos Sexuais
15.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830012

RESUMO

The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.


Assuntos
Gametogênese/genética , Reprodução Assexuada/genética , Reprodução/genética , Taenia/genética , Animais , Cruzamentos Genéticos , Cipriniformes/genética , Cipriniformes/crescimento & desenvolvimento , Hibridização Genética , Meiose/genética , Taenia/crescimento & desenvolvimento
16.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200103, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34304588

RESUMO

We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Assuntos
Especiação Genética , Hibridização Genética , Meiose , Poliploidia , Cromossomos Sexuais/genética , Vertebrados/genética , Animais
17.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591327

RESUMO

Metazoans usually reproduce sexually, blending the unique identity of parental genomes for the next generation through functional crossing-over and recombination in meiosis. However, some metazoan lineages have evolved reproductive systems where offspring are either full (clonal) or partial (hemiclonal) genetic replicas. In the latter group, the process of uniparental genome elimination selectively eliminates either the maternal or paternal genome from germ cells, and only one parental genome is selected for transmission. Although fairly common in plants, hybridogenesis (i.e., clonal haploidization via chromosome elimination) remains a poorly understood process in animals. Here, we explore the proximal cytogenomic mechanisms of somatic and germ cell chromosomes in sexual and hybrid genotypes of Australian carp gudgeons (Hypseleotris) by tracing the fate of each set during mitosis (in somatic tissues) and meiosis (in gonads). Our comparative study of diploid hybrid and sexual individuals revealed visually functional gonads in male and female hybrid genotypes and generally high karyotype variability, although the number of chromosome arms remains constant. Our results delivered direct evidence for classic hybridogenesis as a reproductive mode in carp gudgeons. Two parental sets with integral structure in the hybrid soma (the F1 constitution) contrasted with uniparental chromosomal inheritance detected in gonads. The inheritance mode happens through premeiotic genome duplication of the parental genome to be transmitted, whereas the second parental genome is likely gradually eliminated already in juvenile individuals. The role of metacentric chromosomes in hybrid evolution is also discussed.


Assuntos
Genoma , Hibridização Genética , Cariótipo , Perciformes/genética , Animais , Feminino , Masculino
18.
Genetics ; 215(4): 975-987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32518062

RESUMO

Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.


Assuntos
Peixes/fisiologia , Especiação Genética , Células Híbridas/fisiologia , Infertilidade/genética , Meiose , Partenogênese , Animais , Evolução Biológica , Cromossomos , Peixes/genética , Células Híbridas/citologia
19.
PLoS One ; 14(11): e0224759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31675368

RESUMO

Many closely related species are capable of mating to produce hybrid offspring, which are usually sterile. Nevertheless, altering the gametogenesis of hybrid offspring can rescue hybrids from sterility by enabling asexual reproduction. Hybridogenesis is one of the most complicated asexual reproductive modes, and it includes drastic genome reorganization only in the germline; this is achieved through elimination of one parental genome and duplication of the remaining one to restore diploid chromosomal set and overcome blocks in meiotic progression. We investigated a model of hybridogenesis, namely, water frogs from the Pelophylax esculentus complex, for the emergence of asexual reproduction. Further, we assessed the impact of its asexual reproduction on the maintenance of interspecies hybrids from two populations on the western edge of the P. esculentus range, in which hybrids coexist with either both parental species or with only one parental species. After analysing tadpole karyotypes, we conclude that in both studied populations, the majority of diploid hybrid males produced haploid gametes with the P. ridibundus genome after elimination of the P. lessonae genome. Hybrid females exhibited problems with genome elimination and duplication; they usually produced oocytes with univalents, but there were observations of individual oocytes with 13 bivalents and even 26 bivalents. In some hybrid tadpoles, especially F1 crosses, we observed failed germ cell development, while in tadpoles from backcrosses, germ cells were normally distributed and contained micronuclei. By identifying chromosomes present in micronuclei, we estimated that the majority of tadpoles from all crosses were able to selectively eliminate the P. lessonae chromosomes. According to our results, hybridogenesis in hybrids can appear both from crosses of parental species and crosses between sexual species with hybrid individuals. The ability to eliminate a genome and perform endoreplication to ensure gamete formation differed between male and female hybrids from the studied populations. Some diploid hybrid females can rarely produce not only haploid gametes but also diploid gametes, which is a crucial step in the formation of triploid hybrids.


Assuntos
Rana esculenta/genética , Animais , Cromossomos/genética , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Diploide , Feminino , Gametogênese , Hibridização in Situ Fluorescente , Cariotipagem , Larva/crescimento & desenvolvimento , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Partenogênese/genética , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA