Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2209821120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623194

RESUMO

Long-term climate changes and extreme climate events differentially impact animal populations, yet whether and why these processes may act synergistically or antagonistically remains unknown. Disentangling these potentially interactive effects is critical for predicting population outcomes as the climate changes. Here, we leverage the "press-pulse" framework, which is used to describe ecological disturbances, to disentangle population responses in migratory Magellanic penguins to long-term changes in climate means and variability (presses) and extreme events (pulses) across multiple climate variables and life history stages. Using an unprecedented 38-y dataset monitoring 53,959 penguins, we show for the first time that the presses and pulses of climate change mediate the rate of population decline by differentially impacting different life stages. Moreover, we find that climate presses and pulses can work both synergistically and antagonistically to affect animal population persistence, necessitating the need to examine both processes in concert. Negative effects of terrestrial heat waves (pulses) on adult survival, for example, were countered by positive effects of long-term changes in oceanographic conditions in migratory grounds (presses) on juvenile and adult survival. Taken together, these effects led to predicted population extirpation under all future climate scenarios. This work underscores the importance of a holistic approach integrating multiple climate variables, life stages, and presses and pulses for predicting the persistence of animals under accelerating climate change.


Assuntos
Spheniscidae , Animais , Dinâmica Populacional , Estágios do Ciclo de Vida , Mudança Climática , Estações do Ano
2.
Nat Commun ; 13(1): 3912, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853876

RESUMO

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Assuntos
Spheniscidae , Animais , Evolução Biológica , Fósseis , Genoma , Genômica , Filogenia , Spheniscidae/genética
3.
Trends Ecol Evol ; 6(12): 381-2, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21232515
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA