Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stem Cell Res ; 67: 103043, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791635

RESUMO

Distal renal tubular acidosis (dRTA), a disease characterized by the failure of the distal nephron to secrete acid into the urine, can be caused by mutations in SLC4A1 gene encoding erythroid and kidney anion exchanger 1 (AE1). Here, an induced pluripotent stem cell (iPSC) line was generated from a patient with dRTA and hemolytic anemia carrying compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C>A (p.Thr444Asn). Peripheral blood mononuclear cells (PBMCs) were reprogrammed using Sendai viral reprogramming. The established iPSC line, MUSIi019-A, exhibited pluripotent property and retained the same mutations observed in the patients.


Assuntos
Acidose Tubular Renal , Células-Tronco Pluripotentes Induzidas , Humanos , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Acidose Tubular Renal/genética , Leucócitos Mononucleares/metabolismo , Mutação
2.
BMC Med Genomics ; 15(1): 228, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36320073

RESUMO

BACKGROUND: Mutations in solute carrier family 4 member 1 (SLC4A1) encoding anion exchanger 1 (AE1) are the most common cause of autosomal recessive distal renal tubular acidosis (AR dRTA) in Southeast Asians. To explain the molecular mechanism of this disease with hematological abnormalities in an affected family, we conducted a genetic analysis of SLC4A1 and studied wild-type and mutant AE1 proteins expressed in human embryonic kidney 293T (HEK293T) cells. METHODS: SLC4A1 mutations in the patient and family members were analyzed by molecular genetic techniques. Protein structure modeling was initially conducted to evaluate the effects of mutations on the three-dimensional structure of the AE1 protein. The mutant kidney anion exchanger 1 (kAE1) plasmid construct was created to study protein expression, localization, and stability in HEK293T cells. RESULTS: We discovered that the patient who had AR dRTA coexisting with mild hemolytic anemia carried a novel compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C > A (p.Thr444Asn). Homologous modeling and in silico mutagenesis indicated that these two mutations affected the protein structure in the transmembrane regions of kAE1. We found the wild-type and mutant kAE1 T444N to be localized at the cell surface, whereas the mutants kAE1 SAO and SAO/T444N were intracellularly retained. The half-life of the kAE1 SAO, T444N, and SAO/T444N mutants was shorter than that of the wild-type protein. CONCLUSION: These results suggest impaired trafficking and instability of kAE1 SAO/T444N as the likely underlying molecular mechanism explaining the pathogenesis of the novel SLC4A1 compound heterozygous mutation identified in this patient.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Rim , Humanos , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células HEK293 , Rim/metabolismo , Mutação
3.
Sci Rep ; 10(1): 10282, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581305

RESUMO

Kidney stone disease (KSD) is a prevalent disorder that causes human morbidity worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defect to complex interaction between genetic and environmental factors. Since mutations of genes responsible for KSD in a majority of families are still unknown, our group is identifying mutations of these genes by means of genomic and genetic analyses. In this study, we identified a novel loss-of-function mutation of PBK, encoding the PDZ binding kinase, that was found to be associated with KSD in an affected Thai family. Glycine (Gly) substituted by arginine (Arg) at position 43 (p.Gly43Arg) in PBK cosegregated with the disease in affected members of this family, but was absent in 180 normal control subjects from the same local population. Gly43 is highly evolutionarily conserved in vertebrates, and its substitution affects protein structure by alterations in H-bond forming patterns. This p.Gly43Arg substitution results in instability of the variant PBK protein as examined in HEK293T cells. The variant PBK protein (p.Gly43Arg) demonstrated decreased kinase activity to phosphorylate p38 MAPK as analyzed by immunoblotting and antibody microarray techniques. Taken together, these findings suggest a possible new mechanism of KSD associated with pathogenic PBK variation.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Substituição de Aminoácidos , Análise Mutacional de DNA , Feminino , Células HEK293 , Humanos , Cálculos Renais/genética , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Linhagem , Estabilidade Proteica , Tailândia
4.
Lab Med ; 50(1): 78-86, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124986

RESUMO

BACKGROUND: Two common mutations of the solute carrier family 4 member 1 (SLC4A1) gene, namely, Southeast Asian ovalocytosis (SAO) and band 3 Bangkok 1 (G701D), cause autosomal recessive distal renal tubular acidosis (AR dRTA) in ethnic Southeast Asian populations. In this study, we applied the high-resolution melting (HRM) method for screening of AR dRTA associated with SLC4A1 mutations in 10 new patients with unknown cause(s) of AR dRTA. METHODS: We analyzed SAO and G701D mutations in the patients and their family members using HRM. The results were confirmed by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) and DNA sequencing techniques. RESULTS: All patients carried homozygous G701D mutation, whereas their family members had heterozygous G701D or homozygous wild-type. CONCLUSIONS: Homozygous G701D is a common cause of AR dRTA in ethnic Thai pediatric populations. HRM can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in Southeast Asian and other populations.


Assuntos
Acidose Tubular Renal/genética , Proteína 1 de Troca de Ânion do Eritrócito/genética , Testes Genéticos/métodos , Análise de Sequência de DNA/métodos , Acidose Tubular Renal/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação
5.
Anim Biotechnol ; 28(2): 120-130, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27791596

RESUMO

Porcine epidemic diarrhea (PED) is a severe diarrhea disease in swine that is caused by porcine epidemic diarrhea virus (PEDV). Nucleocapsid (N) protein is the RNA-binding protein of PEDV, which plays an important role for virus life cycle. The aim of this research was to screen and characterize the compounds that could inhibit the activity of PEDV N protein. The gene encoding PEDV N protein obtained from PEDV Thai isolate was cloned and expressed in E. coli. Its amino acid sequence was employed to generate the three dimensional structure by homology modeling. There were 1,286 compounds of FDA-approved drug database that could virtually bind to the RNA-binding region of N protein. Three compounds, trichlormethiazide, D-(+) biotin, and glutathione successfully bound to the N protein, in vitro, with the IC50 at 8.754 mg/mL, 0.925 mg/mL, and 2.722 mg/mL. Antiviral activity in PEDV-infected Vero cells demonstrated that the effective concentration of trichlormethiazide, D-(+) biotin, and glutathione in inhibiting PEDV replication were 0.094, 0.094 and 1.5 mg/mL. This study demonstrated a strategy applied for discovery of antiviral agents capable of inhibiting PEDV N protein and PEDV replication. The compounds identified here exhibited a potential use as therapeutic agents for controlling PEDV infection.


Assuntos
Antivirais/administração & dosagem , Antivirais/química , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas do Nucleocapsídeo/antagonistas & inibidores , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Antivirais/farmacocinética , Sítios de Ligação , Relação Dose-Resposta a Droga , Dose Letal Mediana , Vírus da Diarreia Epidêmica Suína/metabolismo , Ligação Proteica , Inativação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA