RESUMO
Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.
Assuntos
IMP Desidrogenase , Inositol , Células-Tronco Neoplásicas , Neoplasias de Próstata Resistentes à Castração , Animais , Masculino , Humanos , Camundongos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inositol/metabolismo , Inositol/farmacologia , Linhagem Celular Tumoral , IMP Desidrogenase/metabolismo , IMP Desidrogenase/genética , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
Introduction: The hepatic growth factor (HGF) stimulates DNA synthesis and cell proliferation and plays a role in tissue protection and regeneration. In this study, we have examined the effect of incubation of HGF with urine-derived stem cells (USCs) on the secretion of small extracellular vesicles (sEV) by the cells. Materials and Methods: HGF in the incubation medium was either a bolus administration or a controlled release of an equivalent amount from microbeads within the size range of 50-200 µm made with ultrapurified low-viscosity high-guluronic acid (UP-LVG) alginate. USCs were incubated with or without HGF for 3 days or 7 days before removal of the incubation media, followed by harvesting sEV by the precipitation method. The protein content of isolated sEV was measured by bicinchoninic acid assay (BCA) for these three groups: control (no HGF beads), bolus HGF, and HGF beads. We also performed nanoparticle tracking analysis (NTA), Western blot assay, and ELISA for the HGF content of samples. Results: We found a significantly higher concentration of proteins in the HGF microbead group (control release group) compared to the bolus group and the control group after 7 days (p < 0.0017). The NTA data aligned with the BCA; they showed a significantly higher concentration of particles within the size range of sEV (<200 nm) in the group treated with HGF beads compared to the two other groups on day 7 (p < 0.0001). Conclusion: We found that administration of HGF to USCs by controlled release of the growth factor significantly enhances the levels of sEV secretion during 7 days of incubation.
RESUMO
BACKGROUND: Circulating extracellular vesicles (EVs) carry protected cargoes of nucleic acids, proteins, and metabolites. Here we identified and validated the surface proteins and enzymatic activity of chymase, angiotensin converting enzymes 1 (ACE) and 2 (ACE2), and neprilysin (NEP) in EVs isolated from the blood and urine of primary hypertensive patients. METHODS: Peripheral venous blood and spot urine from 34 hypertensive patients were processed to isolate plasma and urinary EVs. Immuno-gold labeling and transmission electron microscopy validated the presence of the exosomal marker protein CD63 on the surface of plasma and urinary EVs. Flow cytometry characterized plasma and urinary EVs for CD63, CD9, and CD81 surface markers. In addition, exosomal CD63, TSG101, and Alix were analyzed in urine by Western blotting. Urinary EVs did not express the endoplasmic reticulum protein calnexin and Golgi protein GM130. Chymase, ACE, ACE2, and NEP activities on 125I substrates â angiotensin-(1-12) [Ang-(1â12)] and angiotensin II (Ang II) â [1 nmol/L each] were quantified by HPLC. Data were analyzed based on whether the patient's blood pressure was controlled (Group I: <140/80 mm Hg) or not controlled (Group II: ≥ 140/80 mm Hg). RESULTS: Chymase activity on Ang-(1â12) was significantly higher in plasma and urinary EVs than in ACE, ACE2, and NEP. In addition, chymase activity in urine EVs was more than 3-fold higher than in plasma EVs. Chymase activity increased in plasma and urine EVs retrieved from Group II patients. No comparable differences were found in the enzymatic activities of ACE, ACE2, and NEP urinary EVs between Group I and Group II. CONCLUSION: These studies reveal a differential enzymatic activity of renin angiotensin system enzymes in plasma and urine EVs isolated from hypertensive patients. Demonstrating a comparatively high chymase enzymatic activity in EVs expands a previously documented finding of increased plasma Ang-(1â12) in hypertensive patients.
RESUMO
Mitochondria dysfunction is increasingly recognized as a critical factor in various pathogenic processes. The mechanism governing mitochondrial quality control serves as an adaptive response, ensuring the preservation of mitochondrial morphology, quantity, and overall function, crucial for cell survival. The generation of mitochondria-derived vesicles (MDVs) is one of the processes of mitochondrial quality control. Recent literature has suggested MDV heterogeneity; however, the detailed characteristics of various MDV subtypes still need to be studied better. Recent studies have shown that MDVs also play a role in inter-organelle communication for mitochondria besides quality control. For instance, Hazan et al. demonstrated that functional mitochondria from Saccharomyces cerevisiae release vesicles independent of the fission machinery. These vesicles, falling within the typical size range of MDVs, were selectively loaded with mitochondrial proteins, especially with functional ATP synthase subunits. Intriguingly, these MDVs maintained membrane potential and could generate ATP. Moreover, MDVs could fuse with naïve mitochondria, transferring their ATP generation machinery. Lastly, this study revealed a potential delivery mechanism of ATP-producing vesicles, presenting a promising avenue to rejuvenate ATP-deficient mitochondria. Overall, this study unveils a novel mechanism for inter-organelle communication by vesicles, which is crucial for maintaining cellular homeostasis and could also be important in pathological conditions.
RESUMO
Gut microbiome dysbiosis is a major contributing factor to several pathological conditions. However, the mechanistic understanding of the communication between gut microbiota and extra-intestinal organs remains largely elusive. Extracellular vesicles (EVs), secreted by almost every form of life, including bacteria, could play a critical role in this inter-kingdom crosstalk and are the focus of present study. Here, we present a novel approach for isolating lipopolysaccharide (LPS)+ bacterial extracellular vesicles (bEVLPS) from complex biological samples, including faeces, plasma and the liver from lean and diet-induced obese (DIO) mice. bEVLPS were extensively characterised using nanoparticle tracking analyses, immunogold labelling coupled with transmission electron microscopy, flow cytometry, super-resolution microscopy and 16S sequencing. In liver tissues, the protein expressions of TLR4 and a few macrophage-specific biomarkers were assessed by immunohistochemistry, and the gene expressions of inflammation-related cytokines and their receptors (n = 89 genes) were measured using a PCR array. Faecal samples from DIO mice revealed a remarkably lower concentration of total EVs but a significantly higher percentage of LPS+ EVs. Interestingly, DIO faecal bEVLPS showed a higher abundance of Proteobacteria by 16S sequencing. Importantly, in DIO mice, a higher number of total EVs and bEVLPS consistently entered the hepatic portal vein and subsequently reached the liver, associated with increased expression of TLR4, macrophage markers (F4/80, CD86 and CD206), cytokines and receptors (Il1rn, Ccr1, Cxcl10, Il2rg and Ccr2). Furthermore, a portion of bEVLPS escaped liver and entered the peripheral circulation. In conclusion, bEV could be the key mediator orchestrating various well-established biological effects induced by gut bacteria on distant organs.
Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Lipopolissacarídeos , Fígado , Veia Porta , Animais , Vesículas Extracelulares/metabolismo , Fígado/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Veia Porta/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Bactérias/metabolismo , Receptor 4 Toll-Like/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Fezes/microbiologia , Disbiose/metabolismo , Disbiose/microbiologiaRESUMO
While the majority of people with cocaine use disorders (CUD) also co-use tobacco/nicotine, most preclinical cocaine research does not include nicotine. The present study examined nicotine and cocaine co-use under several conditions of intravenous drug self-administration in monkeys, as well as potential peripheral biomarkers associated with co-use. In Experiment 1, male rhesus monkeys (N = 3) self-administered cocaine (0.001-0.1 mg/kg/injection) alone and with nicotine (0.01-0.03 mg/kg/injection) under a progressive-ratio schedule of reinforcement. When nicotine was added to cocaine, there was a significant leftward/upward shift in the number of injections received. In Experiment 2, socially housed female and male cynomolgus monkeys (N = 14) self-administered cocaine under a concurrent drug-vs-food choice schedule of reinforcement. Adding nicotine to the cocaine solution shifted the cocaine dose-response curves to the left, with more robust shifts noted in the female animals. There was no evidence of social rank differences. To assess reinforcing strength, delays were added to the presentation of drug; the co-use of nicotine and cocaine required significantly longer delays to decrease drug choice, compared with cocaine alone. Blood samples obtained post-session were used to analyze concentrations of neuronally derived small extracellular vesicles (NDE); significant differences in NDE profile were observed for kappa-opioid receptors when nicotine and cocaine were co-used compared with each drug alone and controls. These results suggest that drug interactions involving the co-use of nicotine and cocaine are not simply changing potency, but rather resulting in changes in reinforcing strength that should be utilized to better understand the neuropharmacology of CUD and the evaluation of potential treatments.
RESUMO
Pediatric difficult airway management is more challenging for an anesthesiologist due to anatomical and physiological differences as compared to adults. Moreover, the familiarity with the use of difficult airway equipment in adults does not equate to proficiency for the same in children. So, here we are presenting the management of a unique case of a difficult airway due to postburn neck contracture in a 4-year-old child, which was managed successfully with the help of a video laryngoscope after the failure attempt with a flexible fiberoptic bronchoscope.
RESUMO
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Vesículas Extracelulares , Humanos , Transtorno Depressivo Maior/patologia , Vesículas Extracelulares/patologia , Biópsia Líquida , BiomarcadoresRESUMO
Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.
Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Feminino , Animais , Camundongos , Proteoma , Líquido Extracelular , Microglia , Proteômica , HipocampoRESUMO
BACKGROUND: Extracellular vesicles (EVs) have emerged as a promising liquid biopsy for various diseases. For the first time, using plasma and urinary EVs, we assessed the activity of renin-angiotensin system (RAS), a central regulator of renal, cardiac, and vascular physiology, in patients with control (Group I) or uncontrolled (Group II) primary hypertension. METHODS: EVs were isolated from 34 patients with history of hypertension, and characterized for size and concentration by nanoparticle tracking analyses, exosomal biomarkers by immunogold labeling coupled with transmission electron microscopy, flow cytometry and immunoblotting. EVs were analyzed for the hydrolytic activity of chymase, angiotensin converting enzyme (ACE), ACE2, and neprilysin (NEP) by HPLC. RESULTS: Plasma and urinary EVs were enriched for small EVs and expressed exosomal markers (CD63, CD9, and CD81). The size of urinary EVs (but not plasma EVs) was significantly larger in Group II compared to Group I. Differential activity of RAS enzymes was observed, with significantly higher chymase activity compared to ACE, ACE2, and NEP in plasma EVs. Similarly, urinary EVs exhibited higher chymase and NEP activity compared to ACE and ACE2 activity. Importantly, compared to Group I, significantly higher chymase activity was observed in urinary EVs (p = 0.03) from Group II, while no significant difference in activity was observed for other RAS enzymes. CONCLUSIONS: Bioactive RAS enzymes are present in plasma and urinary EVs. Detecting chymase in plasma and urinary EVs uncovers a novel mechanism of angiotensin II-forming enzyme and could also mediate cell-cell communication and modulate signaling pathways in recipient cells.
RESUMO
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aß) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Camundongos , Animais , Humanos , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismoRESUMO
Obesity is a major risk factor for multiple chronic diseases. Anthropometric and imaging approaches are primarily used to assess adiposity, and there is a dearth of techniques to determine the changes in adipose tissue (AT) at the molecular level. Extracellular vesicles (EVs) have emerged as a novel and less invasive source of biomarkers for various pathologies. Furthermore, the possibility of enriching cell or tissue-specific EVs from the biofluids based on their unique surface markers has led to classifying these vesicles as "liquid biopsies", offering valuable molecular information on hard-to-access tissues. Here, we isolated small EVs from AT (sEVAT) of lean and diet-induced obese (DIO) mice, identified unique surface proteins on sEVAT by surface shaving followed by mass spectrometry, and developed a signature of five unique proteins. Using this signature, we pulled out sEVAT from the blood of mice and validated the specificity of isolated sEVAT by measuring the expression of adiponectin, 38 adipokines on an array, and several adipose tissue-related miRNAs. Furthermore, we provided evidence of sEV applicability in disease prediction by characterizing sEVAT from the blood of lean and DIO mice. Interestingly, sEVAT-DIO cargo showed a stronger pro-inflammatory effect on THP1 monocytes compared to sEVAT-Lean and a significant increase in obesity-associated miRNA expression. Equally important, sEVAT cargo revealed an obesity-associated aberrant amino acid metabolism that was subsequently validated in the corresponding AT. Lastly, we show a significant increase in inflammation-related molecules in sEVAT isolated from the blood of nondiabetic obese (>30 kg/m2) individuals. Overall, the present study offers a less-invasive approach to characterize AT.
Assuntos
Tecido Adiposo , Vesículas Extracelulares , Tecido Adiposo/química , Biópsia Líquida , Vesículas Extracelulares/química , Obesidade , Humanos , Animais , Camundongos , BiomarcadoresRESUMO
INTRODUCTION: Brain cell-derived small extracellular vesicles (sEVs) in blood offer unique cellular and molecular information related to the onset and progression of Alzheimer's disease (AD). We simultaneously enriched six specific sEV subtypes from the plasma and analyzed a selected panel of microRNAs (miRNAs) in older adults with/without cognitive impairment. METHODS: Total sEVs were isolated from the plasma of participants with normal cognition (CN; n = 11), mild cognitive impairment (MCI; n = 11), MCI conversion to AD dementia (MCI-AD; n = 6), and AD dementia (n = 11). Various brain cell-derived sEVs (from neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells) were enriched and analyzed for specific miRNAs. RESULTS: miRNAs in sEV subtypes differentially expressed in MCI, MCI-AD, and AD dementia compared to the CN group clearly distinguished dementia status, with an area under the curve (AUC) > 0.90 and correlated with the temporal cortical region thickness on magnetic resonance imaging (MRI). DISCUSSION: miRNA analyses in specific sEVs could serve as a novel blood-based molecular biomarker for AD. HIGHLIGHTS: Multiple brain cell-derived small extracellular vesicles (sEVs) could be isolated simultaneously from blood. MicroRNA (miRNA) expression in sEVs could detect Alzheimer's disease (AD) with high specificity and sensitivity. miRNA expression in sEVs correlated with cortical region thickness on magnetic resonance imaging (MRI). Altered expression of miRNAs in sEVCD31 and sEVPDGFRß suggested vascular dysfunction. miRNA expression in sEVs could predict the activation state of specific brain cell types.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , MicroRNAs , Humanos , Idoso , Doença de Alzheimer/patologia , Células Endoteliais/patologia , Disfunção Cognitiva/diagnóstico , MicroRNAs/genética , BiomarcadoresRESUMO
Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. Circulating EVs are protected from degradation, making them attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labeling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g. APPswe,PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with A deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.
RESUMO
Recent positron emission tomography (PET) studies of kappa opioid receptors (KOR) in humans reported significant relationships between KOR availability and social status, as well as cocaine choice. In monkey models, social status influences physiology, receptor pharmacology and behavior; these variables have been associated vulnerability to cocaine abuse. The present study utilized PET imaging to examine KOR availability in socially housed, cocaine-naïve female and male monkeys, and peripheral measures of KORs with neuron-derived extracellular vesicles (NDE). KOR availability was assessed in dominant and subordinate female and male cynomolgus macaques (N = 4/rank/sex), using PET imaging with the KOR selective agonist [11C]EKAP. In addition, NDE from the plasma of socially housed monkeys (N = 13/sex; N = 6-7/rank) were isolated by immunocapture method and analyzed for OPRK1 protein expression by ELISA. We found significant interactions between sex and social rank in KOR availability across 12 of 15 brain regions. This was driven by female data, in which KOR availability was significantly higher in subordinate monkeys compared with dominant monkeys; the opposite relationship was observed among males, but not statistically significant. No sex or rank differences were observed for NDE OPRK1 concentrations. In summary, the relationship between brain KOR availability and social rank was different in female and male monkeys. This was particularly true in female monkeys. We hypothesize that lower [11C]EKAP binding potentials were due to higher concentrations of circulating dynorphin, which is consistent with greater vulnerability in dominant compared with subordinate females. These findings suggest that the KOR is an important target for understanding the neurobiology associated with vulnerability to abused drugs and sex differences, and detectable in peripheral circulation.
Assuntos
Cocaína , Vesículas Extracelulares , Animais , Feminino , Masculino , Cocaína/farmacologia , Vesículas Extracelulares/metabolismo , Macaca fascicularis/metabolismo , Neurônios/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Opioides kappa/metabolismoRESUMO
Recent studies have demonstrated the association of APP and Aß with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1's usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aß1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa.
RESUMO
Extracellular vesicles have emerged as a less-invasive nano-tool for discovering biomarkers of Alzheimer's disease and related dementia. Here, we analysed different neuron-enriched extracellular vesicles from plasma to predict response and molecular mechanisms of ketogenic diet's efficacy in mild cognitive impairment participants. The study was a randomized crossover design in which cognitively normal and mild cognitive impairment participants consumed a modified Mediterranean-ketogenic diet or American Heart Association diet for 6 weeks, followed by other diet after washout. L1 cell adhesion molecule, synaptophysin and neural cell adhesion molecule surface markers were used to enrich for neuron-secreted small extracellular vesicles (sEVL1CAM, sEVSYP and sEVNCAM). For the first time, we have presented multiple evidences, including immunogold labelling/transmission electron microscopy, clusters of differentiation 63-ELISA-based assay, confocal microscopy fluorescent images and flow cytometry data confirming the presence of L1 cell adhesion molecule on the surface of sEVL1CAM, validating purity and relative abundance of sEVL1CAM in the plasma. Cargo analysis of sEVL1CAM showed that modified Mediterranean-ketogenic diet intervention reduces amyloid beta 1-42 (50.3%, P = 0.011), p181-tau (34.9%, P = 0.033) and neurofilament light (54.2%, P = 0.020) in mild cognitive impairment participants. Moreover, sEVL1CAMshowed better sensitivity compared with CSF in analysing increased glutamate (6-folds, P < 0.0001) from mild cognitive impairment participants following modified Mediterranean-ketogenic diet intervention. sEVL1CAM characterization also suggested that modified Mediterranean-ketogenic diet differentially targets the expression of various glutamate receptors-glutamate receptor ionotropic NMDA1, glutamate receptor ionotropic NMDA2A, glutamate receptor ionotropic NMDA2B and glutamate receptor ionotropic AMPA type subunit 1. Importantly, these sEVL1CAM measures strongly correlated with corresponding clinical CSF biomarkers (neurogranin, amyloid beta 1-42, neurofilament light and tau). Furthermore, sEVL1CAM were loaded with less advanced glycation endproducts and exhibited anti-inflammatory activity following modified Mediterranean-ketogenic diet intervention. Most importantly, the expression of monocarboxylate transporter 2 on the surface of sEVL1CAM predicted the amyloid beta 1-42 response to modified Mediterranean-ketogenic diet intervention (area under the curve = 0.87, P = 0.0044) and offered a novel screening tool to identify participants responsive to this dietary intervention. Finally, sEVL1CAM, sEVSYP and sEVNCAM showed significantly high concordance in analysing amyloid beta 1-42 (Pearson correlation coefficient ≥ 0.63, P < 0.01) and neurofilament light (Pearson correlation coefficient ≥ 0.49, P < 0.05). Together, small extracellular vesicles in plasma offers promise in assessing the efficacy of dietary/therapeutic intervention against mild cognitive impairment/Alzheimer's disease.
RESUMO
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Hepáticas , Masculino , Animais , Ratos , Camundongos , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Carcinoma de Células Escamosas de Cabeça e Pescoço , Roedores/metabolismo , Ácido Ascórbico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Doxorrubicina , Primatas/metabolismoRESUMO
Aim: The development of chemotherapy resistance is the major obstacle in the treatment of advanced prostate cancer (PCa). Extracellular vesicles (EVs) secretion plays a significant role among different mechanisms contributing to chemoresistance. Hence, inhibition of EVs release may increase the efficacy of chemotherapeutic drugs against PCa. Methods: Paclitaxel (PTX) resistant PCa cells (PC3-R and DU145-R) were treated with GW4869, a known exosome biogenesis inhibitor. EVs were isolated from the conditioned media by ExoQuick-based precipitation method and characterized for concentration and size distribution by nanoparticle tracking analysis. The effect of GW4869 treatment on the survival and growth of PCa cells was assessed by MTT, and colony formation assays in vitro, and ectopic PC3-R xenografts in male athymic nude mice in vivo. The effect of other EV biogenesis inhibitors, imipramine and dimethyl amiloride (DMA), treatment was also analyzed on the survival of PC3-R cells. Results: GW4869 (10-20 µM) treatment of PTX resistant PCa cells significantly reduced the release of small EVs (50-100 nm size range) while increasing the release of larger EVs (> 150 nm in size), and inhibited their clonogenicity. Moreover, GW4869 (5-20 µM) treatment (24-72h) significantly inhibited the survival of PC3-R cells in a dose-dependent manner. We observed a similar growth inhibition with both imipramine (5-20 µg/mL) and DMA (5-20 µg/mL) treatment in PC3-R cells. Furthermore, GW4869 treatment (IP) in mice bearing PC3-R xenografts significantly reduced the tumor weight (65% reduction, P = 0.017) compared to the vehicle-treated control mice without causing any noticeable toxicity. Conclusion: Inhibiting the release of EVs could sensitize the resistant PCa cells to chemotherapy.