Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(9): 323, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37651004

RESUMO

In this research, we examined the microbial diversity in Sohna hot spring, Haryana, India using shotgun metagenome sequencing based on the Illumina Hiseq 4000 sequencing technology. The raw sequence data from metagenomic paired-end libraries were analysed for taxonomic classification, diversity, and functional annotation using MG-RAST online server. The results showed the presence of total of 57 phyla, 931 genera, and 2068 species, predominantly occupied by Moraxellaceae (Gammaproteobacteria). However, at the species level, we reported the presence of some representative pathogenic taxa, such as Acinetobacter baumannii and Moraxella osloensis. The functional annotation predicted at various levels based on SEED-based subsystem, KEGG ortholog identity (KO), Cluster of Orthologous Groups (COGs) database identified the predominance of genes associated with primary and secondary metabolism along with a crucial role in environmental and genetic signals, cellular communication, and cell signalling. Comparative Genome Analysis (CGA) using The Pathosystem Resource Integration Centre (PATRIC) tool based on genome annotation and assembly of the metagenomic libraries for representative taxon Acinetobacter baumannii (NCBI tax id:470) characterized the reads with a unique genome identifier of 470.20380 (A. baumannii DDLJ4) which is evolutionary closer to A. baumannii ATCC 470.17978 400667.7. In addition, the CARD database results about the presence of potential AMR pathotypes and the prevalence of adeABC, adeIJK, abeM gene-specific clusters that function as multidrug efflux pumps. Overall, the results provided a comprehensive insight into virulence and anti-microbial resistance mechanism and could be useful for developing potential drug targets against the possible AMR pathotypes.


Assuntos
Acinetobacter baumannii , Fontes Termais , Metagenômica , Índia , Acinetobacter baumannii/genética , Evolução Biológica
2.
Chemosphere ; 275: 129856, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33636519

RESUMO

With the increase in the world's population, demand for food and other products is continuously rising. This has put a lot of pressure on the agricultural sector. To fulfill these demands, the utilization of chemical fertilizers and pesticides has also increased. Consequently, to overcome the adverse effects of agrochemicals on our environment and health, there has been a shift towards organic fertilizers or other substitutes, which are ecofriendly and help to maintain a sustainable environment. Microalgae have a very high potential of carbon dioxide (CO2) capturing and thus, help in mitigating the greenhouse effect. It is the most productive biological system for generating biomass. The high growth rate and higher photosynthetic efficiency of the algal species compared to the terrestrial plants make them a wonderful alternative towards a sustainable environment. Moreover, they could be cultivated in photobioreactors or open ponds, which in turn reduce the demand for arable land. Biochar derived from algae is high in nutrients and exhibits the property of ion exchange. Therefore, it can be utilized for sustainable agriculture by partial substituting the chemical fertilizers that degrade the fertility of the soil in the long run. This review provides a detailed insight on the properties of algal biochar as a potential fertilizer for sustainable agriculture. Application of algal biochar in bio-refinery and its economic aspects, challenges faced and future perspective are also discusses in this study.


Assuntos
Gases de Efeito Estufa , Agricultura , Dióxido de Carbono/análise , Sequestro de Carbono , Carvão Vegetal , Fertilizantes , Solo
3.
Sci Total Environ ; 728: 138481, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361358

RESUMO

Perceiving and detecting a sustainable source of energy is very critical issue for current modern society. Hydrogen on combustion releases energy and water as a byproduct and has been considered as an environmental pollution free energy carrier. From the last decade, most of the researchers have recommended hydrogen as one of the cleanest fuels and its demand is rising ever since. Hydrogen having the highest energy density is more advantageous than any other fuel. Hydrogen obtained from the fossil fuels produces carbon dioxide as a byproduct and creates environment negative effect. Therefore, biohydrogen production from green algae and cyanobacteria is an attractive option that generates a benign renewable energy carrier. Microalgal feedstocks show a high potential for the generation of fuel such as biohydrogen, bioethanol and biodiesel. This article has reviewed the different methods of biohydrogen production while also trying to find out the most economical and ecofriendly method for its production. A thorough review process has been carried out to study the methods, enzymes involved, factors affecting the rate of hydrogen production, dual nature of algae, challenges and commercialization potential of algal biohydrogen.


Assuntos
Cianobactérias , Microalgas , Biocombustíveis , Combustíveis Fósseis , Hidrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA