Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 188(4): 2115-2130, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35022793

RESUMO

The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthesis complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assemble and function in planta only when all the required isoforms are present. The moss Physcomitrium (Physcomitrella) patens has seven CESA genes that can be grouped into two functionally and phylogenetically distinct classes. Previously, we showed that PpCESA3 and/or PpCESA8 (class A) together with PpCESA6 and/or PpCESA7 (class B) form obligate hetero-oligomeric complexes required for normal secondary cell wall deposition. Here, we show that gametophore morphogenesis requires a member of class A, PpCESA5, and is sustained in the absence of other PpCESA isoforms. PpCESA5 also differs from the other class A PpCESAs as it is able to self-interact and does not co-immunoprecipitate with other PpCESA isoforms. These results are consistent with the hypothesis that homo-oligomeric CSCs containing only PpCESA5 subunits synthesize cellulose required for gametophore morphogenesis. Analysis of mutant phenotypes also revealed that, like secondary cell wall deposition, normal protonemal tip growth requires class B isoforms (PpCESA4 or PpCESA10), along with a class A partner (PpCESA3, PpCESA5, or PpCESA8). Thus, P. patens contains both homo-oligomeric and hetero-oligomeric CSCs.


Assuntos
Briófitas , Bryopsida , Bryopsida/genética , Parede Celular , Celulose , Glucosiltransferases/genética , Sementes
2.
Funct Plant Biol ; 47(5): 464-472, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209206

RESUMO

Nitrate (NO3-) fertilisers are commonly used to improve the yield and quality of most non-legume crops such as potato (Solanum tuberosum L.). Root cells absorb nitrate from the soil using plasma membrane-bound transporters. In this study, we overexpressed a putative nitrate transporter from potato (StNPF1.11) to study its effect on the level of tuber protein content in potato. At 10 weeks after planting, overexpression of StNPF1.11 increased the mean level of protein content of all n = 23 transformants by 42% compared with the wild-type control. The level of chlorophyll content in leaves (from upper and lower plant parts) also increased for several individuals at 10 weeks. Tuber yield (fresh) was not structurally impaired; however, the mean tuber dry matter content of the transformants was reduced by 3-8% at 19 weeks. At 19 weeks, an overall increase in protein content was not clearly observed. Throughout plant development, half of the transformants were taller than the control. A basic understanding of the mechanisms that regulate plant nitrogen uptake, transport and utilisation, enable the development of tools to improve both crop nutrition and crop quality that are needed to enhance the viability and sustainability of future plant production systems.


Assuntos
Solanum tuberosum , Proteínas de Transporte de Ânions , Clorofila , Transportadores de Nitrato , Folhas de Planta , Tubérculos , Solanum tuberosum/genética
3.
Plant J ; 99(5): 862-876, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021018

RESUMO

In seed plants, cellulose is synthesized by rosette-shaped cellulose synthesis complexes (CSCs) that are obligate hetero-oligomeric, comprising three non-interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gene. Therefore, if P. patens CSCs are hetero-oligomeric, then CSCs of this type evolved convergently in mosses and seed plants. Previous gene knockout and promoter swap experiments showed that PpCESAs from class A (PpCESA3 and PpCESA8) and class B (PpCESA6 and PpCESA7) have non-redundant functions in secondary cell wall cellulose deposition in leaf midribs, whereas the two members of each class are redundant. Based on these observations, we proposed the hypothesis that the secondary class A and class B PpCESAs associate to form hetero-oligomeric CSCs. Here we show that transcription of secondary class A PpCESAs is reduced when secondary class B PpCESAs are knocked out and vice versa, as expected for genes encoding isoforms that occupy distinct positions within the same CSC. The class A and class B isoforms co-accumulate in developing gametophores and co-immunoprecipitate, suggesting that they interact to form a complex in planta. Finally, secondary PpCESAs interact with each other, whereas three of four fail to self-interact when expressed in two different heterologous systems. These results are consistent with the hypothesis that obligate hetero-oligomeric CSCs evolved independently in mosses and seed plants and we propose the constructive neutral evolution hypothesis as a plausible explanation for convergent evolution of hetero-oligomeric CSCs.


Assuntos
Bryopsida/genética , Bryopsida/metabolismo , Celulose/biossíntese , Celulose/química , Sementes/genética , Sementes/metabolismo , Bryopsida/enzimologia , Parede Celular , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Folhas de Planta , Proteínas de Plantas/genética , Isoformas de Proteínas
4.
Carbohydr Polym ; 156: 312-321, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842828

RESUMO

In this study, we analyze 31 transgenic lines and their respective untransformed background lines to determine the transgene effects on targeted structures including the pectin components rhamnogalacturonan I (RG-I) and homogalacturonan (HG), neutral side chains (galactan/arabinangalactan), acetylation of pectin, and cellulose level. Modification arising from the pectin backbone- or pectin side chain transgenic lines either increased or decreased the HG:RG-I ratio, side chain length, and methyl esterification of pectin in the tuber cell wall. The pectin esterification transgenic line exhibited only limited side effects. The cellulose level-targeting transgenic lines yielded an unexpectedly high HG:RG-I ratio and longer pectic side chains. These results clearly demonstrate that in effects of a transgene are not restricted to the direct activity of the targeted enzyme but have consequences for the structure of the cell wall matrix. Analysis of whole cell wall structure is therefore necessary to assess the complete effect, direct and indirect, of a transgene.


Assuntos
Parede Celular/química , Pectinas/química , Pectinas/genética , Tubérculos/química , Solanum tuberosum/química , Solanum tuberosum/genética , Animais , Tubérculos/citologia , Solanum tuberosum/citologia , Transgenes/genética
5.
Carbohydr Polym ; 144: 9-16, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27083787

RESUMO

Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing ß-galactosidase (ß-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, ß-Gal-14 hot buffer-soluble solids (HBSS) of pectin contained 54% less galactose than Karnico HBSS, representing shorter galactan side chains. The individual pectin populations of ß-Gal-14 HBSS showed different modifications extended to the two sub-populations as obtained by ion-exchange chromatography. Compared to wild-type, RGL-18 HBSS contained 27% more galacturonic acid and 55% less Gal on fresh potato weight basis, which was due to the removal of galactan-rich rhamnogalacturonan I (RG-I) segments. All pectin populations of RGL-18 showed consistently low levels of RG-I segments. Transgenic modification showed side effects on the methyl-esterification and acetyl substitution of RGL-18 HBSS (DM=53, DA=21), but not of the ß-Gal-14 HBSS in comparison to wild-type (DM=29, DA=54).


Assuntos
Pectinas/metabolismo , Polissacarídeo-Liases/genética , Solanum tuberosum/genética , Transgenes , beta-Galactosidase/genética , Acetatos/análise , Parede Celular/enzimologia , Galactose/química , Plantas Geneticamente Modificadas , Polissacarídeo-Liases/metabolismo , beta-Galactosidase/metabolismo
6.
Carbohydr Polym ; 146: 337-44, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112882

RESUMO

Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type.


Assuntos
Parede Celular/química , Tubérculos/química , Polissacarídeos/química , Polissacarídeos/genética , Solanum tuberosum/química , Solanum tuberosum/genética , Animais , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Tubérculos/citologia , Tubérculos/genética , Tubérculos/fisiologia , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/citologia , Solanum tuberosum/enzimologia , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
8.
PLoS One ; 9(11): e112387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383767

RESUMO

Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane-cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Celulase/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulase/química , Proteínas de Membrana/química , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA