Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Res Sq ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559068

RESUMO

Background: To interrupt residual malaria transmission and achieve successful elimination of P. falciparum in low-transmission settings, the World Health Organization (WHO) recommends the administration of a single dose of 0.25 mg/kg (or 15 mg/kg for adults) primaquine (PQ) combined with artemisinin-based combination therapy (ACT) without glucose-6-phosphate dehydrogenase (G6PD) testing. However, due to the risk of hemolysis in patients with G6PD deficiency (G6PDd), PQ use is not as common. Thus, this study aimed to assess the safety of a single low dose of PQ administered to patients with G6PD deficiency. Methods: An observational cohort study was conducted with patients treated for uncomplicated P. falciparum malaria with either single-dose PQ (0.25 mg/kg) (SLD PQ) + ACT or ACT alone. Microscopy-confirmed uncomplicated P. falciparum malaria patients visiting public health facilities in Arjo Didessa, Southwest Ethiopia, were enrolled in the study from September 2019 to November 2022. Patients with uncomplicated P. falciparum malaria were followed up for 28 days through clinical and laboratory diagnosis, such as measurements of G6PD levels and hemoglobin (Hb) concentrations. G6PD levels were masured by a quantiative biosensor machine. Patient interviews were also conducted, and the type and frequency of clinical complaints were recorded. Hb data were taken on days (D) 7, 14, 21, and 28 following treatment with SLD-PQ + ACT or ACT alone. Results: A total of 249 patients with uncomplicated P. falciparum malaria were enrolled in this study. Of these, 83 (33.3%) patients received ACT alone, and 166 (66.7%) received ACT combined with SLD-PQ treatment. The median age of the patients was 20 (IQR 14) years. G6PD deficiency was found in 17 (6.8%) patients, 14 males and 3 females. There were 6 (7.2%) and 11 (6.6%) phenotypic G6PD-deficient patients in the ACT alone and ACT + SLD-PQ arms, respectively. The mean Hb levels in patients treated with ACT + SLD-PQ were reduced by an average of 0.45 g/dl (95% CI = 0.39 to 0.52) in the posttreatment phase (D7) compared to a reduction of 0.30 g/dl (95% CI = 0.14 to -0.47) in patients treated with ACT alone (P = 0.157). A greater mean Hb reduction was observed on day 7 in the G6PD deficiency group (-0.56 g/dL) than in the G6PD normal group (-0.39 g/dL); however, there was no statistically significant difference (P = 0.359). Overall, D14 losses were 0.10 g/dl (95% CI = -0.00 to 0.20) and 0.05 g/dl (95% CI = -0.123 to 0.22) in patients with and without SLD-PQ, respectively (P = 0.412). Conclusions: Our findings showed that single low-dose primaquine (SLD-PQ) treatment for uncomplicated P. falciparum malaria is safe and does not increase the risk of hemolysis in G6PDd patients. This evidence suggests that the wider deployment of SLD-PQ for P. falciparum is part of a global strategy for eliminating P. falciparum malaria.

2.
Malar J ; 23(1): 76, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486245

RESUMO

BACKGROUND: Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS: A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS: Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS: Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.


Assuntos
Malária Falciparum , Malária Vivax , Humanos , Plasmodium vivax/genética , Malária Vivax/epidemiologia , Etiópia/epidemiologia , Saúde Pública , Malária Falciparum/epidemiologia , Febre , Instalações de Saúde
3.
PLoS One ; 19(3): e0290655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512863

RESUMO

BACKGROUND: Consuming contaminated raw vegetables and fruits is one of the primary means of parasite transmission to humans. Periodic monitoring of parasitic contamination in these food items is a crucial step in preventing the spread of parasitic disease in the community. This study was aimed at detecting intestinal parasitic contamination caused by consuming raw vegetables and fruits sold in three open-air markets and its associated factors in peri-urban areas of Jimma City, Oromia, Ethiopia. METHODS: A cross-sectional study was conducted on fruits and vegetables collected from three peri-urban open-aired markets (namely; Hora Gibe, Bore and Jiren markets) in peri-urban areas of Jimma City between July and September 2021. A total of 187 fresh vegetable samples and 188 fruits were collected and examined for intestinal parasite contamination. About 200g of fruit and vegetable samples were processed and examined microscopically for parasite contamination, utilizing direct wet mount and modified Zeihl-Neelson staining methods in accordance with standard protocols. A structured questionnaire was used to collect data on the socio-demographic characteristics of vendors and risk factors for fruit and vegetable contamination. All data were analyzed using SPSS version 20.0. RESULT: Of the 187 fresh vegetable samples and 188 fresh vegetable samples, 105 (56.1%) and 68/188 (36.2%) of vegetables and fruit samples, respectively, were found contaminated with one or more intestinal parasites. Remarkably, high level of contamination in fresh vegetable samples was recorded both in Carrot (Daucus carota) 63.8% (30/46) and Lettuce (Lactuca sativa) 63.1% (29/46) while Green pepper (Capsicum spp.) is the least contaminated. In fruit samples, Avokado (Persea americana) 42.6% (20/47) and Banana (Musa acuminata) 14.9% (7/47) were the most and the least commonly contaminated items respectively. The identified helminthes and protozoans were Ascaris lumbricoides, Strongyloides stercoralis, Hymenolepis nana, Entamoeba histolytica/dispar, Giardia lamblia, Cryptosporidium spp., Toxocara spp. And Fasciola spp. The most predominant parasite encountered was A. lumbricoides 46(12.3%) whereas both Toxocara spp. 12(6.9) and Fasciola spp. 2(0.5) were the least detected parasites. It is worth-mentioned that the rate of contamination in Bore market (38.15%) was higher compared with Jiren market (34.7%) and Hora Gibe market (27%). However, the rate of contamination in vegetables and fruit obtained from the three district was non-significant (p = 0.19). Contamination was more common in vegetables than fruits (AOR = 5.78, p<0.001). It was also observed that decreased parasitic contamination was significantly associated with washing the products before displaying it for selling (p < 0.001). CONCLUSION: The study has identified a high rate of raw vegetables and fruits contaminated with intestinal helminthes and protozoan. Contaminated fresh vegetables and fruits in open-aired peri-urban markets of Jimma city, Ethiopia may play a significant role in transmission of intestinal parasitic infections to humans, particularly A. lumbricoides infection. Therefore, it is urgently needed for health authorities to educate the public on the proper handling of vegetables and fruits prior to consumption.


Assuntos
Criptosporidiose , Cryptosporidium , Fasciola , Enteropatias Parasitárias , Parasitos , Animais , Humanos , Verduras/parasitologia , Frutas/parasitologia , Estudos Transversais , Etiópia , Enteropatias Parasitárias/epidemiologia , Toxocara , Prevalência
4.
J Med Entomol ; 61(3): 573-583, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38394375

RESUMO

In efforts to intensify malaria control through vector control and hasten the progress towards elimination, the impact of control interventions needs to be evaluated. This requires sampling vector population using appropriate trapping methods. The aim of this article is to critically review methods of sampling malaria vectors and their reliability in estimating entomological indicators of malaria transmission in Africa. The standard methods are human landing catch (HLC), pyrethrum spray catch, and pit shelter for sampling host-seeking, indoor resting, and outdoor resting malaria vectors, respectively. However, these methods also have drawbacks such as exposure of collectors to infective mosquito bites, sampling bias, and feasibility issue. Centers for Disease Control and Prevention (CDC) light traps placed beside human-occupied bed nets have been used as an alternative to the HLC for sampling host-seeking malaria vectors. Efforts have been made to evaluate the CDC light traps against HLC to generate a conversion factor in order to use them as a proxy estimator of human biting rate and entomological inoculation rates in Africa. However, a reproducible conversion factor was not found, indicating that the trapping efficiency of the CDC light traps varies between different geographical locations. Several other alternative traps have also been developed and evaluated in different settings but most of them require further standardization. Among these, human-baited double net trap/CDC light trap combination and mosquito electrocuting trap have the potential to replace the HLC for routine malaria vector surveillance. Further research is needed to optimize the alternative sampling methods and/or develop new surveillance tools based on vector behavior.


Assuntos
Malária , Mosquitos Vetores , Mosquitos Vetores/fisiologia , Animais , Malária/transmissão , Malária/prevenção & controle , África , Controle de Mosquitos/métodos , Humanos , Anopheles/fisiologia , Reprodutibilidade dos Testes , Entomologia/métodos
5.
Parasit Vectors ; 17(1): 53, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321572

RESUMO

BACKGROUND: Understanding the clustering of infections for persistent malaria transmission is critical to determining how and where to target specific interventions. This study aimed to determine the density, blood meal sources and malaria transmission risk of anopheline vectors by targeting malaria index cases, their neighboring households and control villages in Arjo-Didessa, southwestern Ethiopia. METHODS: An entomological study was conducted concurrently with a reactive case detection (RCD) study from November 2019 to October 2021 in Arjo Didessa and the surrounding vicinity, southwestern Ethiopia. Anopheline mosquitoes were collected indoors and outdoors in index case households and their surrounding households (neighboring households), as well as in control households, using pyrethrum spray cache (PSC) and U.S. Centers for Disease Control and Prevention (CDC) light traps. Adult mosquitoes were morphologically identified, and speciation in the Anopheles gambiae complex was done by PCR. Mosquito Plasmodium infections and host blood meal sources were detected by circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA) and cytochrome b-based blood meal PCR, respectively. RESULTS: Among the 770 anopheline mosquitoes collected, An. gambiae sensu lato (A. gambiae s.l.) was the predominant species, accounting for 87.1% (n = 671/770) of the catch, followed by the Anopheles coustani complex and Anopheles pharoensis, which accounted for 12.6% (n = 97/770) and 0.26% (n = 2/770) of the catch, respectively. From the sub-samples of An. gambiae s.l.analyzed with PCR, An. arabiensis and Anopheles amharicus were identified. The overall mean density of mosquitoes was 1.26 mosquitoes per trap per night using the CDC light traps. Outdoor mosquito density was significantly higher than indoor mosquito density in the index and neighboring households (P = 0.0001). The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis were 20.8% (n = 34/168) and 24.0% (n = 41/168), respectively. The overall Plasmodium sporozoite infection rate of anophelines (An. arabiensis and An. coustani complex) was 4.4% (n = 34/770). Sporozoites were detected indoors and outdoors in captured anopheline mosquitoes. Of these CSP-positive species for Pv-210, Pv-247 and Pf, 41.1% (n = 14/34) were captured outdoors. A significantly higher proportion of sporozoite-infected mosquitoes were caught in index case households (5.6%, n = 8/141) compared to control households (1.1%, n = 2/181) (P = 0.02), and in neighboring households (5.3%, n = 24/448) compared to control households (P = 0.01). CONCLUSIONS: The findings of this study indicated that malaria index cases and their neighboring households had higher outdoor mosquito densities and Plasmodium infection rates. The study also highlighted a relatively higher outdoor mosquito density, which could increase the potential risk of outdoor malaria transmission and may play a role in residual malaria transmission. Thus, it is important to strengthen the implementation of vector control interventions, such as targeted indoor residual spraying, long-lasting insecticidal nets and other supplementary vector control measures such as larval source management and community engagement approaches. Furthermore, in low transmission settings, such as the Arjo Didessa Sugarcane Plantation, providing health education to local communities, enhanced environmental management and entomological surveillance, along with case detection and management by targeting of malaria index cases and their immediate neighboring households, could be important measures to control residual malaria transmission and achieve the targeted elimination goals.


Assuntos
Anopheles , Malária , Animais , Bovinos , Humanos , Mosquitos Vetores , Etiópia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos
6.
Geohealth ; 7(12): e2023GH000868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089068

RESUMO

A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub-Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent-based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two-fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi-permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all-year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning.

7.
J Trop Med ; 2023: 8811795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058563

RESUMO

School-age children (SAC) are at a higher risk of geohelminth or soil-transmitted helminth (STH) infections due to their practice of walking and playing barefoot, lack of adequate sanitary facilities, and poor personal hygiene. In Ethiopia, periodic deworming has been implemented since 2013 with the aim of interrupting the transmission of STH in children by 2025. To evaluate the likely success of such a control program, it is crucial to monitor the transmission of STH, especially in peri-urban settings where environmental sanitation is modest. The aim of this study was to determine the prevalence and determinants of STH infections among SAC in peri-urban areas of Jimma City, Southwestern Ethiopia. A community-based cross-sectional study was conducted in five peri-urban Kebeles of Jimma City from July to September, 2021. Systematic random sampling was used to select 522 households with at least one child, and 478 children (5-15 years old) were recruited randomly from the households. Data on sociodemographic and potential risk factors were collected using a structured questionnaire. Stool samples from each study participant were collected and examined microscopically using the Kato-Katz technique. Multivariate logistic regression model was used to identify risk factors associated with STH infections. The prevalence of any STH among SAC was 23.4%, with Ascaris lumbricoides being the predominant STH species (15.7%), followed by Trichuris trichiura (9%) and hookworm (2.1%). Most (86.6%) of the STH-positive SAC had a single infection and a light infection intensity (88.2%), with a mean intensity of 367.4 eggs per gram. Location of Kebele (AOR = 2.73; 95% CI: 1.21-6.16, p=0.016), lack of hand washing after defecation (AOR = 6.39; 95% CI: 3.16-12.95, p < 0.001), untrimmed fingernails (AOR = 2.65; 95% CI: 1.56-4.51, p < 0.001), and lack of previous deworming (AOR = 2.90; 95% CI: 1.47-5.74, p=0.002) were significant predictors for STH infections among SAC. In conclusion, the study revealed that STH infections are significant health problem in the peri-urban areas of Jimma City. Strengthening periodic deworming and improving children's hygiene through health education are required to reduce the transmission.

8.
Malar J ; 22(1): 341, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940948

RESUMO

BACKGROUND: Water resource development projects, such as dams and irrigation schemes, have a positive impact on food security and poverty reduction. However, such projects could increase prevalence of vector borne disease, such as malaria. This study investigate the impact of different agroecosystems and prevalence of malaria infection in Southwest Ethiopia. METHODS: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 study participants from 1449 households in Arjo and 546 households in Gambella enrolled in the study and blood samples were collected, respectively. All blood samples were microscopically examined and a subset of microscopy negative blood samples (n = 2244) were analysed by qPCR. Mixed effect logistic regression and generalized estimating equation were used to determine microscopic and submicroscopic malaria infection and the associated risk factors, respectively. RESULTS: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). On the other hand, of the 1713 and 531 samples analysed by qPCR from Arjo and Gambella the presence of submicroscopic infection was 1.2% and 12.8%, respectively. Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale were identified by qPCR in both sites. Irrigation was a risk factor for submicroscopic infection in both Arjo and Gambella. Irrigation, being a migrant worker, outdoor job, < 6 months length of stay in the area were risk factors for microscopic infection in Gambella. Moreover, school-age children and length of stay in the area for 1-3 years were significant predictors for submicroscopic malaria in Gambella. However, no ITN utilization was a predictor for both submicroscopic and microscopic infection in Arjo. Season was also a risk factor for microscopic infection in Arjo. CONCLUSION: The study highlighted the potential importance of different irrigation practices impacting on submicroscopic malaria transmission. Moreover, microscopic and submicroscopic infections coupled with population movement may contribute to residual malaria transmission and could hinder malaria control and elimination programmes in the country. Therefore, strengthening malaria surveillance and control by using highly sensitive diagnostic tools to detect low-density parasites, screening migrant workers upon arrival and departure, ensuring adequate coverage and proper utilization of vector control tools, and health education for at-risk groups residing or working in such development corridors is needed.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Oryza , Saccharum , Humanos , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Malária/epidemiologia , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Prevalência , Criança
9.
Malar J ; 22(1): 350, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968712

RESUMO

BACKGROUND: Water resource development projects are essential for increasing agricultural productivity and ensuring food security. However, these activities require the modification of pre-existing environmental settings, which may alter mosquito larval habitat availability and seasonality. The intensive utilization of current adult vector control tools results in insecticide resistance among the main vectors. When coupled with behavioural resistances, a shift in malaria vector feeding and resting behaviours could compromise the effectiveness of the current adult vector control strategies. Thus, it is important to look for new or alternative vector control interventions for immatures to complement adult control by focusing on different larval habitats and their seasonal availability. Thus, this study investigated larval habitat seasonality and seasonal larval abundance and distribution in irrigated sugar cane plantation settings in Ethiopia. METHODS: Anopheles mosquito larval habitats were surveyed and visited twice a month for a period of 14 months. Anopheline larvae and pupae were collected, reared, and fed finely ground fish food. Adults were provided with sucrose solution and kept under standard conditions. Female Anopheles mosquitoes were identified morphologically and using a species-specific PCR assay. Environmental parameters, which include habitats' physico-chemical characteristics, were assessed. Larval habitat diversity and larval abundance and distribution were determined across different seasons. RESULTS: The study revealed that Anopheles gambiae sensu lato (s.l.) was the most predominant 4197(57%) vector species, followed by Anopheles coustani complex 2388 (32.8%). Molecular analysis of sub-samples of An. gambiae s.l. resulted in Anopheles arabiensis (77.9%) and Anopheles amharicus (21.5%), and the remaining 1.1% (n = 7) sub-samples were not amplified. Physico-chemical parameters such as temperature (t = 2.22, p = 0.028), conductivity (t = 3.21, p = 0.002), dissolved oxygen (t = 7.96, p = 0.001), nitrate ion (t = 2.51, p = 0.013), and ammonium ion (t = 2.26, p = 0.025) showed a significant and direct association with mosquito larval abundance. Furthermore, mosquito larval abundance was correlated with distance to the nearest houses (r = - 0.42, p = 0.001), exposure to sunlight (r = 0.34, p = 0.001), during long and short rainy season animal hoof prints, truck tires/road puddles and rain pools were negatively correlated (r = - 0.22, p = 0.01) and types of habitat (r = - 0.20, p = 0.01). Significant habitat type productivity were observed in man-made pools (t = 3.881, P = 0.01163), rain pools, animal hoof prints, (t = - 4.332, P = 0.00749 in both short and long rainy season, whereas, during dry seasons habitat type productivity almost similar and have no significance difference. CONCLUSION: The study found that different larval habitats had variable productivity in different seasons, and that physical and physicochemical features like ammonium and nitrate, as well as the distance between larval habitats and households, are related to larval production. As a result, vector control should take into account the seasonality of Anopheles larval habitat as well as the impact of pesticide application on larval source management.


Assuntos
Compostos de Amônio , Anopheles , Malária , Saccharum , Humanos , Animais , Feminino , Larva , Etiópia , Nitratos , Mosquitos Vetores , Ecossistema , Estações do Ano
10.
Malar J ; 22(1): 354, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981691

RESUMO

BACKGROUND: Ultrasensitive rapid diagnostic test (usRDT) was recently developed to improve the detection of low-density Plasmodium falciparum infections. However, its diagnostic performance has not been evaluated in the Democratic Republic of Congo (DRC). This study aims to determine the performance of the usRDT in malaria diagnosis in asymptomatic individuals under field condition in Kisangani, Northeast of DRC. METHODS: A community-based cross-sectional study was carried out from June to August 2022 on 312 asymptomatic individuals residing in the city of Kisangani. Capillary blood samples were collected by finger prick for microscopic examination of thick and thin blood film, RDTs, and nested polymerase chain reaction (PCR). Alere™ Malaria Ag P.f usRDT and conventional RDT (cRDT/SD Bioline Malaria Ag P.f) kits were used for the detection of Plasmodium histidine rich protein 2 (HRP2) antigen as a proxy for the presence of P. falciparum. The diagnostic performance of the usRDT was compared with cRDT, microscopy and PCR. RESULTS: The prevalence of asymptomatic P. falciparum malaria was 40.4%, 42.0%, 47.1% and 54.2% by cRDT, microscopy, usRDT and PCR, respectively. By using PCR as a reference, usRDT had sensitivity and specificity of 87.0% (95% CI 81.4-91.7) and 100.0% (95% CI 97.5-100.0), respectively, whereas the cRDT had sensitivity and specificity of 74.6% (95% CI 67.3-80.9) and 100% (95% CI 97.1-100.0), respectively. By using microscopy as a reference, usRDT had sensitivity and specificity of 96.9% (95% CI 92.4-99.2) and 89.0% (95% CI 83.5-93.1), respectively, while the cRDT had sensitivity and specificity of 96.2% (95% CI 92.3-98.7) and 100% (95% CI 97.9-100.0), respectively. CONCLUSION: The usRDT showed better diagnostic performance with higher sensitivity than the cRDT which is currently in use as point-of-care test. Further research is necessary to assess the access and cost-effectiveness of the usRDTs to use for malaria surveillance.


Assuntos
Malária Falciparum , Testes de Diagnóstico Rápido , Humanos , República Democrática do Congo/epidemiologia , Plasmodium falciparum , Estudos Transversais , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Antígenos de Protozoários
11.
Am J Trop Med Hyg ; 109(5): 1028-1035, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918005

RESUMO

Despite historical dogma that Duffy blood group negativity of human erythrocytes confers resistance to Plasmodium vivax blood stage infection, cases of P. vivax malaria and asymptomatic blood stage infection (subclinical malaria) have recently been well documented in Duffy-negative individuals throughout Africa. However, the impact of Duffy negativity on the development of naturally acquired immunity to P. vivax remains poorly understood. We examined antibody reactivity to P. vivax and P. falciparum antigens at two field sites in Ethiopia and assessed Duffy gene expression by polymerase chain reaction amplification and sequencing of the GATA-1 transcription factor-binding site of the Duffy antigen receptor for chemokines (DARC) gene promotor region that is associated with silencing of erythroid cell transcription and absent protein expression. Antibodies to three of the four P. vivax blood stage antigens examined, RBP2b, EBP2, and DBPIISal-1, were significantly lower (P < 0.001) in Duffy-negative individuals relative to Duffy-positive individuals. In stark contrast, no clear pattern was found across Duffy-negative and Duffy-positive genotypes for P. falciparum antibodies. We conclude that lack of erythroid Duffy expression is associated with reduced serologic responses, indicative of less naturally acquired immunity and less cumulative exposure to blood stage P. vivax parasites relative to Duffy positive individuals living in the same communities.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Plasmodium vivax/genética , Malária Vivax/parasitologia , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Sistema do Grupo Sanguíneo Duffy/genética , Etiópia/epidemiologia , Antígenos de Protozoários , Proteínas de Protozoários
12.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886593

RESUMO

Background: Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 4.2 million annual cases and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and P. falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. Methods: A total of 9,580 and 4,667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centers. Results: Among the community-based cross-sectional samples, infection rate of P. vivax among the Duffy positives was 2-22 fold higher than among the Duffy negatives. Parasite positivity rate was 10-50 fold higher in Duffy positive than Duffy negatives among samples collected from the health center settings and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. P. vivax parasitemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. Conclusions: Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centers. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.

13.
Res Sq ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993196

RESUMO

Background: Water resource development projects such as dams and irrigation schemes have a positive impact on food security and poverty reduction but might result in increased prevalence of malaria. Methods: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 blood samples were collected from Arjo and Gambella. A subset of 2244 microscopy negative blood samples were analyzed by PCR. Results: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). Level of education was an individual risk factors associated with infection in Arjo [AOR: 3.2; 95%CI (1.27-8.16)] and in Gambella [AOR: 1.7; 95%CI (1.06-2.82)]. While duration of stay in the area for < 6 months [AOR: 4.7; 95%CI (1.84-12.15)] and being a migrant worker [AOR: 4.7; 95%CI (3.01-7.17)] were risk factors in Gambella. Season [AOR: 15.9; 95%CI (6.01-42.04)], no ITN utilization [AOR: 22.3; 95%CI (7.74-64.34)] were risk factors in Arjo, and irrigation [AOR: 2.4; 95%CI (1.45-4.07)] and family size [AOR: 2.3; 95%CI (1.30-4.09)] risk factors in Gambella. Of the 1713 and 531 randomly selected smear negative samples from Arjo and Gambella and analyzed by PCR the presence of Plasmodium infection was 1.2% and 12.8%, respectively. P. falciparum, P. vivax, and P. ovale were identified by PCR in both sites. Conclusion: Strengthening malaria surveillance and control in project development areas and proper health education for at-risk groups residing or working in such development corridors is needed.

14.
Malar J ; 22(1): 12, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624480

RESUMO

BACKGROUND: Innovative vector control tools are needed to counteract insecticide resistance and residual malaria transmission. One of such innovative methods is an ivermectin (IVM) treatment to reduce vector survival. In this study, a laboratory experiment was conducted to investigate the effect of ivermectin on survivorship, fertility and egg hatchability rate of Anopheles arabiensis in Ethiopia. METHODS: An in vitro experiment was conducted using 3-5 days old An. arabiensis adults from a colony maintained at insectary of Tropical and Infectious Diseases Research Center, Jimma University (laboratory population) and Anopheles mosquitoes reared from larvae collected from natural mosquito breeding sites (wild population). The mosquitoes were allowed to feed on cattle blood treated with different doses of ivermectin (0 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml and 80 ng/ml). During each feeding experiment, the mosquitoes were held in cages and blood-fed using a Hemotek feeder. Mortality and egg production were then recorded daily for up to 9 days. Time to death was analysed by a Cox frailty model with replicate as frailty term and source of mosquito (wild versus laboratory), treatment type (ivermectin vs control) and their interaction as categorical fixed effects. Kaplan Meier curves were plotted separately for wild and laboratory populations for a visual interpretation of mosquito survival as a function of treatment. RESULTS: Both mosquito source and treatment had a significant effect on survival (P < 0.001), but their interaction was not significant (P = 0.197). Compared to the controls, the death hazard of An. arabiensis that fed on ivermectin-treated blood was 2.3, 3.5, 6.5, 11.5 and 17.9 times that of the control for the 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, and 80 ng/ml dose, respectively. With respect to the number of hatched larvae, hatched pupae and emerged adults per fed mosquitoes, a significant difference was found between the control and the 5 ng/ml dose group (P < 0.001). The number of hatched larvae and pupae, and emerged adults decreased further for the 10 ng/ml dose group and falls to zero for the higher doses. CONCLUSION: Treating cattle blood with ivermectin reduced mosquito survival, fertility, egg hatchability, larval development and adult emergence of An. arabiensis in all tested concentrations of ivermectin in both the wild and laboratory populations. Thus, ivermectin application in cattle could be used as a supplementary vector control method to tackle residual malaria transmission and ultimately achieve malaria elimination in Ethiopia.


Assuntos
Anopheles , Fragilidade , Inseticidas , Malária , Animais , Bovinos , Ivermectina/farmacologia , Inseticidas/farmacologia , Etiópia/epidemiologia , Sobrevivência , Mosquitos Vetores , Malária/prevenção & controle , Fertilidade , Controle de Mosquitos/métodos
15.
Malar J ; 21(1): 364, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461066

RESUMO

BACKGROUND: The rate of decay of the biological efficacy of insecticides used for indoor residual spraying (IRS) is an important factor when making decisions on insecticide choice for national malaria control programmes. A key roadblock to IRS programme is insecticide resistance. If resistance is detected to most of the existing insecticides used for IRS (DDT, pyrethroids, organophosphates and carbamates), the logical next choice could be neonicotinoid insecticides, as pyrethroids are used to treat nets. SumiShield™ 50WG belongs to the neonicotinoid class of insecticides and has shown promising results in several phase I, II and III trials in different settings. The aim of this study was to assess the persistence of SumiShield™ 50WG by spraying on different wall surfaces and determine its decay rates over time in Ethiopia. METHODS: Five huts with different wall surface types (mud, dung, paint and cement) which represented the Ethiopian house wall surfaces were used to evaluate the residual efficacy of SumiShield™ 50WG. Actellic 300CS sprayed on similar wall surfaces of another five huts was used as a comparator insecticide and two huts sprayed with water were used as a control. All huts were sprayed uniformly by an experienced spray operator; non-stop starting from the door and moving clockwise to cover the entire wall surface of the hut. The treatments were assigned to huts randomly. The residual efficacy of the insecticide formulations was evaluated against a susceptible insectary-reared population of Anopheles arabiensis using WHO cone bioassays. RESULTS: SumiShield™ 50WG resulted in mortality rates of over 80% at 120 h post-exposure on all surface types for up to nine months post-spray, while Actellic 300CS yielded mortality rates of over 80% for eight months after spray. CONCLUSIONS: The results of this trial demonstrated that the residual efficacy of SumiShield™ 50WG extends up to nine months on all treated wall surface types. The long-lasting residual efficacy and unique mode of action of the SemiShield™ 50WG shows that it could be an ideal product to be considered as a potential candidate insecticide formulation for IRS in malaria endemic countries such as Ethiopia or other sub-Saharan countries where the transmission season lasts up to four months or longer.


Assuntos
Inseticidas , Piretrinas , Etiópia , Inseticidas/farmacologia , Neonicotinoides
16.
Am J Trop Med Hyg ; 107(4_Suppl): 14-20, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228905

RESUMO

Malaria control programs in Africa encounter daunting challenges that hinder progressive steps toward elimination of the disease. These challenges include widespread insecticide resistance in mosquito vectors, increasing outdoor malaria transmission, lack of vector surveillance and control tools suitable for outdoor biting vectors, weakness in malaria surveillance, and an inadequate number of skilled healthcare personnel. Ecological and epidemiological changes induced by environmental modifications resulting from water resource development projects pose additional barriers to malaria control. Cognizant of these challenges, our International Center of Excellence for Malaria Research (ICEMR) works in close collaboration with relevant government ministries and agencies to align its research efforts with the objectives and strategies of the national malaria control and elimination programs for the benefit of local communities. Our overall goal is to assess the impact of water resource development projects, shifting agricultural practices, and vector interventions on Plasmodium falciparum and P. vivax malaria in Kenya and Ethiopia. From 2017 to date, the ICEMR has advanced knowledge of malaria epidemiology, transmission, immunology, and pathogenesis, and developed tools to enhance vector surveillance and control, improved clinical malaria surveillance and diagnostic methods, and strengthened the capacity of local healthcare providers. Research findings from the ICEMR will inform health policy and strategic planning by ministries of health in their quest to sustain malaria control and achieve elimination goals.


Assuntos
Malária Vivax , Malária , Animais , Etiópia/epidemiologia , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores
17.
Am J Trop Med Hyg ; 107(4_Suppl): 5-13, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228918

RESUMO

Food insecurity, recurrent famine, and poverty threaten the health of millions of African residents. Construction of dams and rural irrigation schemes is key to solving these problems. The sub-Saharan Africa International Center of Excellence for Malaria Research addresses major knowledge gaps and challenges in Plasmodium falciparum and Plasmodium vivax malaria control and elimination in malaria-endemic areas of Kenya and Ethiopia where major investments in water resource development are taking place. This article highlights progress of the International Center of Excellence for Malaria Research in malaria vector ecology and behavior, epidemiology, and pathogenesis since its inception in 2017. Studies conducted in four field sites in Kenya and Ethiopia show that dams and irrigation increased the abundance, stability, and productivity of larval habitats, resulting in increased malaria transmission and a greater disease burden. These field studies, together with hydrological and malaria transmission modeling, enhance the ability to predict the impact of water resource development projects on vector larval ecology and malaria risks, thereby facilitating the development of optimal water and environmental management practices in the context of malaria control efforts. Intersectoral collaborations and community engagement are crucial to develop and implement cost-effective malaria control strategies that meet food security needs while controlling malaria burden in local communities.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , África Oriental/epidemiologia , Animais , Etiópia/epidemiologia , Humanos , Larva , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Mosquitos Vetores , Plasmodium falciparum , Plasmodium vivax , Água
18.
PLoS One ; 17(10): e0276137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251667

RESUMO

Soil-transmitted helminths (STH) is a term used to refer to infections caused by intestinal worms mainly due to A. lumbricoides, T. trichiura, and hookworm species which are transmitted through contaminated soil. This study was conducted to assess the prevalence and intensity of STHs infection among individual members living within the selected household heads (HHs) certified either as a model HHs or non-model HHs based on the implementation level of a training program known as the Health Extension Program (HEP). A community-based comparative cross-sectional study was conducted from April to June 2018 at Seka Chekorsa Woreda, Jimma zone. Model and non-model HHs were selected systematically from each of the randomly selected district villages employing a multistage sampling technique. Sociodemographic and risk factors data associated with STHs infections were collected using a pre-tested structured questionnaire. Parasitological stool sample microscopic examination was done using saline wet mount and Kato Katz thick smear technique. Data analysis was performed using SPSS software version 20 for descriptive statistics, comparison, and logistic regression at a p-value < 0.05 for statistical significance. Overall, 612 individuals were recruited in the study from 120 randomly selected HHs. The prevalence of STHs infections was found to be 32.4%. A total of 45 (14.7%) model and 153 (50.0%) non-model individual participants were positive for at least one species of STHs showing a significant difference between individuals in model and non-model HHs (AOR: 6.543, 95% CI; 4.36-9.82, P<0.001). The dominant STHs were T. trichiura (21.6%) followed by A. lumbricoides (6.4%) and hookworms (2.3%). The intensity of T. trichiura and A. lumbricoides infection have shown a significant difference (p<0.05) while hookworm species infection was not significantly different (p>0.05) for the individuals in the HHs groups. On the other hand, the households training status, age of participants, and latrine use pattern were found significant predictors of STHs infection prevalence in the multivariate analysis (P<0.05). Therefore, the prevalence and intensity of STHs infection was higher among individuals living in a non-model HHs than model HHs.


Assuntos
Helmintíase , Helmintos , Infecções por Uncinaria , Ancylostomatoidea , Animais , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Fezes/parasitologia , Helmintíase/epidemiologia , Helmintíase/parasitologia , Prevalência , Solo/parasitologia
19.
PLoS One ; 17(9): e0274702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107925

RESUMO

BACKGROUND: Ethiopia has set national targets for eliminating soil-transmitted helminths (STH) as public health problems by 2020 and for breaking their transmission by 2025 using periodic mass treatment of children in endemic areas. However, the status of STH infection among the adults living in the same communities remains unknown. The aim of this study, therefore, was to determine the prevalence and intensity of STH infections and associated factors among the household heads in the peri-urban areas of Jimma town, Oromia, Ethiopia. METHODS: A community-based cross-sectional study was conducted in five peri-urban kebeles (smallest administrative unit in Ethiopia) of Jimma town from May to July 2021. A semi-structured questionnaire was used to collect data on socio-demographic and predisposing factors. The Kato-Katz concentration technique was utilized to detect and quantify the STH in stool samples. Both bivariate and multivariate analyses were done. P-value <0.05 was considered statistically significant. RESULTS: A total of 376 household heads (19.9% women and 80.1% men) from peri-urban areas were included in the study. The overall STH prevalence was 18.1% (95% CI: 14.6-22.1) with A. lumbricoides being the predominant species (11.4%) followed by T. trichiura (7.2%) and hookworm (2.1%). Most of the STH positive household heads had single infections (85.3%) and light-intensity infections (88.5%). Wealth status (AOR = 2.7; 95% CI: 1.31-5.50, P = 0.007), hand washing habits before meals (AOR = 7.07; 95% CI: 1.79-27.88, p = 0.005), fingernails status (AOR = 2.99; 95% CI: 1.59-5.65, p = 0.001), and toilet facility type (AOR = 2.06; 95% CI: 1.13-3.76, p = 0.017) were found to have statistically significant associations with the STH infection. CONCLUSION: The findings of this study showed a nearly moderate level of STH prevalence among household heads in the peri-urban community. This could serve as an important reservoir for reinfection of the treated children and other at-risk groups in the community.


Assuntos
Helmintíase , Helmintos , Adulto , Animais , Criança , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Feminino , Helmintíase/parasitologia , Humanos , Masculino , Prevalência , Fatores de Risco , Solo/parasitologia
20.
PLoS One ; 17(1): e0261713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030201

RESUMO

BACKGROUND: Indoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia. METHODS: Adult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR. RESULTS: Among the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation. CONCLUSION: Anopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated.


Assuntos
Irrigação Agrícola , Alelos , Anopheles/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Piretrinas , Animais , Etiópia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA