Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
JTO Clin Res Rep ; 4(7): 100527, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521368

RESUMO

Introduction: Relapse is common after resection of lung adenocarcinoma (LUAD). Features of the tumor microenvironment (TME) which influence postsurgical survival outcomes are poorly characterized. Here, we analyzed the TME of more than 1500 LUAD specimens to identify the relationship between B-cell infiltration and prognosis. Methods: Whole exome sequencing and bulk RNA sequencing were performed on LUADs and adjacent normal lung tissue. Relapse-free survival and overall survival (OS) were retrospectively correlated with characteristics of the tumor and TME in three data sets. Results: High B-cell content (defined as >10% B cells) was associated with improved OS in both a The Cancer Genome Atlas-resected LUAD data set (p = 0.01) and a separate institutional stage II LUAD data set (p = 0.04, median not reached versus 89.5 mo). A validation cohort consisting of pooled microarray data representing more than 1400 resected stage I to III LUADs confirmed the association between greater B-cell abundance, specifically higher B-cell expression, and longer postsurgical survival (median OS 90 versus 71 mo, p < 0.01). Relapse-free survival was longer for patients with adenocarcinomas with high B-cell content across data sets, but it did not reach statistical significance. Subcategorization of B-cell subsets indicated that high naive B-cell content was most predictive of survival. There was no correlation between programmed death-ligand 1 expression, lymphoid aggregates, or overall immune infiltrate density and survival outcomes across the cohorts. Conclusions: The growing adjuvant immunotherapy repertoire has increased the urgency for identifying prognostic and predictive biomarkers. Comprehensive profiling of more than 1500 LUADs suggests that high tumor-infiltrating B-cell content is a favorable prognostic marker.

2.
Cancer Cell ; 40(8): 879-894.e16, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944503

RESUMO

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.


Assuntos
Neoplasias , Transcriptoma , Algoritmos , Linfócitos T CD8-Positivos , Humanos , Aprendizado de Máquina , Neoplasias/genética , RNA-Seq , Análise de Sequência de RNA , Microambiente Tumoral/genética
3.
Proc Natl Acad Sci U S A ; 119(18): e2200757119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482921

RESUMO

Regulatory T cells (Treg) can impede antitumor immunity and currently represent a major obstacle to effective cancer immunotherapy. Targeting tumor-infiltrating regulatory Treg while sparing systemic Treg represents an optimal approach to this problem. Here, we provide evidence that the interleukin 23 receptor (IL23R) expressed by tumor-infiltrating Treg promotes suppressive activity. Disruption of the IL23R results in increased responsiveness of destabilized Treg to the IL12 cytokine, the production of γ-interferon, and the recruitment of CD8 T cells that inhibit tumor growth. Since the Treg destabilization pathway that is initiated by IL23R blockade is distinct and independent from the destabilization pathway coupled to glucocorticoid-induced TNFR-related protein (GITR) activation, we examined the impact of the coordinate induction of the two destabilization pathways on antitumor immune responses. Combined GITR and IL23R antibody treatment of mice inoculated with MC38 tumors resulted in robust and synergistic antitumor responses. These findings indicate that the delineation of independent Treg destabilization pathways may allow improved approaches to the development of combination immunotherapy for cancers.


Assuntos
Neoplasias , Linfócitos T Reguladores , Anticorpos Bloqueadores , Humanos , Fatores Imunológicos/metabolismo , Imunoterapia , Interleucina-23/metabolismo , Neoplasias/metabolismo
4.
Clin Cancer Res ; 28(5): 915-927, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911681

RESUMO

PURPOSE: We hypothesize that the addition of the phosphodiesterase-5 inhibitor tadalafil to the PD-1 inhibitor nivolumab, is safe and will augment immune-mediated antitumor responses in previously untreated squamous cell carcinoma of the head and neck (HNSCC). PATIENTS AND METHODS: We conducted a two-arm multi-institutional neoadjuvant randomized trial in any-stage resectable HNSCC (NCT03238365). Patients were stratified at randomization by human papillomavirus (HPV) status. Patients in both arms received nivolumab 240 mg intravenously on days 1 and 15 followed by surgery on day 28. Those in the combination therapy arm also received tadalafil 10 mg orally once daily for 4 weeks. Imaging, blood, and tumor were obtained pretreatment and posttreatment for correlative analysis. RESULTS: Neoadjuvant therapy was well-tolerated with no grade 3 to 5 adverse events and no surgical delays. Twenty-five of 46 (54%) evaluable patients had a pathologic treatment response of ≥20%, including three (7%) patients with a complete pathologic response. Regardless of HPV status, tumor proliferation rate was a negative predictor of response. A strong pretreatment T-cell signature in the HPV-negative cohort was a predictor of response. Tadalafil altered the immune microenvironment, as evidenced by transcriptome data identifying enriched B- and natural killer cell gene sets in the tumor and augmented effector T cells in the periphery. CONCLUSIONS: Preoperative nivolumab ± tadalafil is safe in HNSCC and results in more than 50% of the patients having a pathologic treatment response of at least 20% after 4 weeks of treatment. Pretreatment specimens identified HPV status-dependent signatures that predicted response to immunotherapy while posttreatment specimens showed augmentation of the immune microenvironment with the addition of tadalafil.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia Neoadjuvante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Terapia Neoadjuvante/efeitos adversos , Nivolumabe/uso terapêutico , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tadalafila/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral
5.
Cancer Discov ; 8(5): 616-631, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496663

RESUMO

Leukemia is caused by the accumulation of multiple genomic lesions in hematopoietic precursor cells. However, how these events cooperate during oncogenic transformation remains poorly understood. We studied the cooperation between activated JAK3/STAT5 signaling and HOXA9 overexpression, two events identified as significantly co-occurring in T-cell acute lymphoblastic leukemia. Expression of mutant JAK3 and HOXA9 led to a rapid development of leukemia originating from multipotent or lymphoid-committed progenitors, with a significant decrease in disease latency compared with JAK3 or HOXA9 alone. Integrated RNA sequencing, chromatin immunoprecipitation sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that STAT5 and HOXA9 have co-occupancy across the genome, resulting in enhanced STAT5 transcriptional activity and ectopic activation of FOS/JUN (AP1). Our data suggest that oncogenic transcription factors such as HOXA9 provide a fertile ground for specific signaling pathways to thrive, explaining why JAK/STAT pathway mutations accumulate in HOXA9-expressing cells.Significance: The mechanism of oncogene cooperation in cancer development remains poorly characterized. In this study, we model the cooperation between activated JAK/STAT signaling and ectopic HOXA9 expression during T-cell leukemia development. We identify a direct cooperation between STAT5 and HOXA9 at the transcriptional level and identify PIM1 kinase as a possible drug target in mutant JAK/STAT/HOXA9-positive leukemia cases. Cancer Discov; 8(5); 616-31. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Homeodomínio/metabolismo , Janus Quinases/metabolismo , Leucemia/etiologia , Leucemia/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Janus Quinases/genética , Masculino , Camundongos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ligação Proteica , Fatores de Transcrição STAT/genética , Fator de Transcrição AP-1/metabolismo , Transdução Genética , Transgenes
6.
Blood ; 131(4): 421-425, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29187379

RESUMO

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.


Assuntos
Janus Quinase 3/genética , Mutação Puntual , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais , Alelos , Linhagem Celular Tumoral , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Taxa de Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
7.
Blood ; 128(23): 2642-2654, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27694322

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive childhood leukemia that is caused by the accumulation of multiple genomic lesions resulting in transcriptional deregulation and increased cell proliferation and survival. Through analysis of gene expression data, we provide evidence that the hedgehog pathway is activated in 20% of T-ALL samples. Hedgehog pathway activation is associated with ectopic expression of the hedgehog ligands Sonic hedgehog (SHH) or Indian hedgehog (IHH), and with upregulation of the transcription factor GLI1 Ectopic expression of SHH or IHH in mouse T cells in vivo caused hedgehog pathway activation in both lymphoid and epithelial cells in the thymus and resulted in increased expression of important T-cell stimulatory ligands (Dll4, Il7, and Vegf) by thymic epithelial cells. In T-ALL cell lines, pharmacological inhibition or short interfering RNA-mediated knockdown of SMO or GLI1 led to decreased cell proliferation. Moreover, primary T-ALL cases with high GLI1 messenger RNA levels, but not those with low or undetectable GLI1 expression, were sensitive to hedgehog pathway inhibition by GANT61 or GDC-0449 (vismodegib) using ex vivo cultures and in vivo xenograft models. We identify the hedgehog pathway as a novel therapeutic target in T-ALL and demonstrate that hedgehog inhibitors approved by the US Food and Drug Administration could be used for the treatment of this rare leukemia.


Assuntos
Anilidas/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Animais , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Smoothened/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/metabolismo
8.
J Biol Chem ; 290(48): 29022-34, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26446793

RESUMO

JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3(V674A) and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3(L857P) was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3(L857P) activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3(L857P) was observed for homologous Leu(857) mutations of JAK1 and JAK2 and for JAK3(L875H). This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3(V674A) led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3(L857P) induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3(V674A), yet proved much less potent on cells expressing JAK3(L857P). These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.


Assuntos
Janus Quinase 3 , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
9.
Haematologica ; 100(10): 1301-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206799

RESUMO

T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.


Assuntos
Epigênese Genética , Janus Quinases/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores de Interleucina-7/genética , Adulto , Criança , Evolução Clonal/genética , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Janus Quinases/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Prognóstico , Receptores de Interleucina-7/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
10.
J Hematol Oncol ; 8: 91, 2015 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-26208852

RESUMO

Recent studies of acute lymphoblastic leukemia have identified activating mutations in components of the interleukin-7 receptor complex (IL7R, JAK1, and JAK3). It will be of interest to investigate both JAK1 and JAK3 kinase inhibitors as targeted agents for these leukemias.


Assuntos
Janus Quinase 1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas , Transdução de Sinais
11.
Blood ; 124(25): 3738-47, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25301704

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Criança , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Células Jurkat , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/administração & dosagem , Análise de Sobrevida , Células Tumorais Cultivadas
12.
Blood ; 124(20): 3092-100, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25193870

RESUMO

JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transformation, whereas the JAK3 kinase domain mutant could transform cells in a Jak1 kinase-independent manner. Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted with bone marrow progenitor cells expressing JAK3 mutants developed a long-latency transplantable T-ALL-like disease, characterized by an accumulation of immature CD8(+) T cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the treatment of T-ALL.


Assuntos
Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Janus Quinase 1/metabolismo , Janus Quinase 3/genética , Leucemia de Células T/genética , Camundongos , Doença Aguda , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ativação Enzimática/efeitos dos fármacos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Masculino , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA