Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Orthop J Sports Med ; 12(4): 23259671241240375, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576875

RESUMO

Background: Concerns regarding the primary stability of early adjustable loop button (ALB) devices for cortical fixation of tendon grafts in anterior cruciate ligament reconstruction (ACLR) have led to the development of new implant designs. Purpose: To evaluate biomechanical stability of recent ALB implants in comparison with a continuous loop button (CLB) device. Study Design: Controlled laboratory study. Methods: ACLR was performed in a porcine model (n = 40) using 2-strand porcine flexor tendons with a diameter of 8 mm. Three ALB devices (Infinity Button [ALB1 group]; Tightrope II RT [ALB2 group]; A-TACK [ALB3 group]) and 1 CLB device (FlippTack with polyethylene suture) were used for cortical tendon graft fixation. Cyclic loading (1000 cycles up to 250 N) with complete unloading were applied to the free end of the tendon graft using a uniaxial testing machine, followed by load to failure. Elongation, stiffness, yield load, and ultimate failure load were recorded and compared between the groups using a Kruskal-Wallis test with post hoc Dunn correction. Results: Elongation after 1000 cycles at 250 N was similar between groups (ALB1, 4.5 ± 0.7 mm; ALB2, 4.8 ± 0.8 mm; ALB3, 4.5 ± 0.6 mm; CLB, 4.5 ± 0.8 mm), as was load to failure (ALB1, 838 ± 109 N; ALB2, 930 ± 89 N; ALB3, 809 ± 103 N; CLB, 842 ± 80 N). Stiffness was significantly higher in the ALB1 group compared with the CLB group (262.3 ± 21.6 vs 229.3 ± 15.1 N/mm; P < .05). No significant difference was found between the 4 groups regarding yield load. Constructs failed either by rupture of the loop, breakage of the button, or rupture of the tendon. Conclusion: The tested third-generation ALB devices for cortical fixation in ACLR withstood cyclic loading with complete unloading without significant differences to a CLB device. Clinical Relevance: The third-generation ALB devices tested in the present study provided biomechanical stability comparable with that of a CLB device. Furthermore, ultimate failure loads of all tested implants exceeded the loads expected to occur in the postoperative period after ACLR.

2.
Orthop J Sports Med ; 12(3): 23259671241236783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532766

RESUMO

Background: Bone staples have been shown previously to be a viable modality for cortical tendon graft fixation in ligament knee surgery. However, soft tissue reactions have been reported, making implant removal necessary. Magnesium alloys are a promising material for biodegradable orthopaedic implants, with mechanical properties closely resembling those of human bone. Purpose: To compare the primary stability of a biodegradable bone staple prototype made from magnesium to bone staples made from metal in the cortical fixation of tendon grafts during knee surgery. Study Design: Controlled laboratory study. Methods: Primary stability of peripheral tendon graft fixation was assessed in a porcine model of medial collateral ligament reconstruction. Two commercially available metal bone staples (Richards fixation staple with spikes [Me1] and spiked ligament staple [Me2]) were compared with a magnesium bone staple prototype for soft tissue fixation. Primary stability was assessed using a uniaxial materials testing machine. Cyclic loading at 50 and 100 N was applied for 500 cycles each, followed by load-to-failure testing. Results: After 500 cycles at 50 N, elongation was 1.5 ± 0.5 mm in the Me1 group, 1.9 ± 0.5 mm in the Me2 group, and 1.8 ± 0.4 mm in the magnesium group. After 1000 cycles of loading (500 cycles at 50 N and 500 at 100 N), elongation was 3.6 ± 0.9 mm in the Me1 group, 3.5 ± 0.6 mm in the Me2 group, and 4.1 ± 1.0 mm in the magnesium group. No significant differences regarding elongation were found between the groups. Load to failure was 352 ± 115 N in the Me1 group, 373 ± 77 N in the Me2 group, and 449 ± 92 N in the magnesium group, with no significant difference between the groups. Conclusion: In this study, the magnesium bone staples provided appropriate time-zero biomechanical primary stability in comparison with metal bone staples and may therefore be a feasible alternative for cortical fixation of tendon grafts in knee surgery. Clinical Relevance: The biodegradability of magnesium bone staples would eliminate the need for later implant removal.

3.
Chirurgie (Heidelb) ; 95(6): 466-472, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38498122

RESUMO

BACKGROUND: Structured competency-based training is one of the most frequently articulated wishes of residents. METHODS: A survey of 19 residents was conducted regarding their satisfaction with the resident education at a level 1 trauma center. In this article the development of a revised competency-based education concept was carried out. RESULTS: The survey reflected uncertainty as to whether the current structures could meet the requirements of the residency regulations. The improved competency-based education concept consists of clinical mentoring, competency-based catalogs of learning objectives, regular theoretical and practical workshops as well as regular and structured staff evaluations. CONCLUSION: The education concept presented reflects the attempt to establish a contemporary surgical training program which will be evaluated as it progresses.


Assuntos
Educação Baseada em Competências , Educação Médica Continuada , Internato e Residência , Centros de Traumatologia , Humanos , Educação Baseada em Competências/métodos , Educação Médica Continuada/métodos , Alemanha , Inquéritos e Questionários , Competência Clínica/normas , Masculino , Feminino , Traumatologia/educação , Satisfação Pessoal , Atitude do Pessoal de Saúde , Adulto
4.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 864-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454816

RESUMO

PURPOSE: To investigate the forces on a medial collateral ligament (MCL) reconstruction (MCLR) relative to the valgus alignment of the knee. METHODS: Eight fresh-frozen human cadaveric knees were subjected to dynamic valgus loading at 400 N using a custom-made kinematics rig. After resection of the superficial medial collateral ligament, a single-bundle MCLR with a hamstring tendon autograft was performed. A medial opening wedge distal femoral osteotomy was performed and fixed with an external fixator to gradually adjust the alignment in 5° increments from 0° to 10° valgus. For each degree of valgus deformity, the resulting forces acting on the MCLR were measured through a force sensor and captured in 15° increments from 0° to 60° of knee flexion. RESULTS: Irrespective of the degree of knee flexion, increasing valgus malalignment resulted in significantly increased forces acting on the MCLR compared to neutral alignment (p < 0.05). Dynamic loading at 5° valgus resulted in increased forces on the MCLR at all flexion angles ranging between 16.2 N and 18.5 N (p < 0.05 from 0° to 30°; p < 0.01 from 45° to 60°). A 10° valgus malalignment further increased the forces on the MCLR at all flexion angles ranging between 29.4 N and 40.0 N (p < 0.01 from 0° to 45°, p < 0.05 at 60°). CONCLUSION: Valgus malalignment of the knee caused increased forces acting on the reconstructed MCL. In cases of chronic medial instabilities accompanied by a valgus deformity ≥ 5°, a realigning osteotomy should be considered concomitantly to the MCLR to protect the graft and potentially reduce graft failures. LEVEL OF EVIDENCE: Level III.


Assuntos
Ligamentos Colaterais , Tendões dos Músculos Isquiotibiais , Humanos , Cadáver , Articulação do Joelho/cirurgia , Fenômenos Biomecânicos , Ligamentos Colaterais/cirurgia
5.
Am J Sports Med ; 52(4): 928-935, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343294

RESUMO

BACKGROUND: Conflicting evidence has been reported regarding the biomechanical relevance of ramp lesions (RLs) on knee kinematics. Furthermore, the influence of the defect size of the RLs on anterior tibial translation (ATT) and external rotation (ER) is currently unknown. PURPOSE: To evaluate the influence of RL defect size on knee kinematics in anterior cruciate ligament (ACL) deficiency and after simulated ACL reconstruction (sACLR). STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric knee specimens were tested in a 6 degrees of freedom robotic test setup. Force-controlled clinical laxity tests were performed with 200 N of axial compression in 0°, 30°, 60°, and 90° of flexion: 5 N·m internal rotation (IR)/ER torque, 134 N ATT force, and an anteromedial drawer test consisting of 134 N ATT force under 5 N·m ER torque. After determining the native knee kinematics, the ACL was cut at the tibial insertion, followed by a transosseous refixation to simulate a surgical repair or reconstruction (simulated ACL reconstruction; sACLR). An RL was sequentially created with a length of 1, 2, and 3 cm. Each state of the RL was evaluated in the ACL-deficient state and after sACLR. RESULTS: In the ACL-deficient state, only an RL of 3 cm length resulted in a significant increase of ATT in 30° of flexion (mean difference 0.73 mm; 95% CI, 0.36-1.1 mm). After sACLR, an RL had no significant effect. When looking at ER, an RL significantly increased ER in full extension in the ACL-deficient state in 2 cm (mean difference 0.9°; 95% CI, 0.08°-1.74°) and 3 cm length (mean difference 1.9°; 95% CI, 0.57-3.25). Furthermore, a 3-cm RL significantly increased IR in 0° of flexion in the ACL-deficient state (mean difference 1.9°; 95% CI, 0.2°-3.6°). No effect of ramp lesions on rotation was found after sACLR. CONCLUSION: RLs result in a small increase in ATT, ER, and IR in ACL-deficient knees at early flexion angles, but not after sACLR. CLINICAL RELEVANCE: Small RLs did not change time-zero knee kinematics and may, therefore, be left untreated, especially when the ACL is reconstructed.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Procedimentos Cirúrgicos Robóticos , Humanos , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Cadáver , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular , Fenômenos Biomecânicos
6.
J Bone Joint Surg Am ; 106(9): 809-816, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377221

RESUMO

BACKGROUND: The current literature lacks recommendations regarding surgical approaches to best visualize and reduce Hoffa fractures. The aims of this study were to (1) define surgical corridors to the posterior portions of the lateral and medial femoral condyles and (2) compare the articular surface areas visible with different approaches. METHODS: Eight fresh-frozen human cadaveric knees (6 male and 2 female donors; mean age, 68.2 ± 10.2 years) underwent dissection simulating 6 surgical approaches to the distal femur. The visible articular surface areas for each approach were marked using an electrocautery device and subsequently analyzed using image-processing software. The labeled areas of each femoral condyle were statistically compared. RESULTS: At 30° of flexion, visualization of the posterior portions of the lateral and medial femoral condyles was not possible by lateral and medial parapatellar approaches, as only the anterior 29.4% ± 2.1% of the lateral femoral condyle and 25.6% ± 2.8% of the medial condyle were exposed. Visualization of the lateral femoral condyle was limited by the posterolateral ligamentous structures, hence a posterolateral approach only exposed its central (13.1% ± 1.3%) and posterior (12.4% ± 1.1%) portions. Posterolateral extension by an osteotomy of the lateral femoral epicondyle significantly improved the exposure to 53.4% ± 2.7% and, when combined with a Gerdy's tubercle osteotomy, to 70.9% ± 4.1% (p < 0.001). For the posteromedial approach, an arthrotomy between the anteromedial retinaculum and the superficial medial collateral ligament, and one between the posterior oblique ligament and the medial gastrocnemius tendon, allowed visualization of the central (13.5% ± 2.2%) and the posterior (14.6% ± 2.3%) portions of the medial femoral condyle, while a medial femoral epicondyle osteotomy significantly improved visualization to 66.1% ± 5.5% (p < 0.001). CONCLUSIONS: Visualization of the posterior portions of the femoral condyles is limited by the specific anatomy of each surgical corridor. Extension by osteotomy of the femoral epicondyles and Gerdy's tubercle significantly improved articular surface exposure of the femoral condyles. CLINICAL RELEVANCE: Knowledge of the surgical approach-specific visualization of the articular surface of the femoral condyles might be helpful to properly reduce small Hoffa fragments.


Assuntos
Cadáver , Fraturas do Fêmur , Humanos , Feminino , Masculino , Idoso , Fraturas do Fêmur/cirurgia , Articulação do Joelho/cirurgia , Pessoa de Meia-Idade , Fêmur/cirurgia , Fêmur/anatomia & histologia , Idoso de 80 Anos ou mais , Dissecação/métodos
8.
Unfallchirurgie (Heidelb) ; 127(1): 18-26, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-37848564

RESUMO

Different medial structures are responsible for restraining valgus rotation, external rotation, and anteromedial rotation. When injured this can result in various degrees of isolated and combined instabilities. In contrast to earlier speculation, the posterior oblique ligament (POL) is no longer considered to be the main stabilizer of anteromedial rotatory instability (AMRI). Acute proximal medial ruptures are typically managed conservatively with very good clinical results. Conversely, acute distal ruptures usually require a surgical intervention. Chronic instabilities mostly occur in combination with instabilities of the anterior cruciate ligament (ACL). The clinical examination is a particularly important component in these cases to determine the indications for surgery for an additional medial reconstruction. In cases of severe medial and anteromedial instabilities, surgical treatment should be considered. Biomechanically, a combined medial and anteromedial reconstruction appears to be superior to other reconstruction methods; however, there is currently a lack of clinical studies to confirm this biomechanical advantage.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Amplitude de Movimento Articular , Instabilidade Articular/etiologia , Fenômenos Biomecânicos , Articulação do Joelho/diagnóstico por imagem , Ruptura
9.
Eur J Orthop Surg Traumatol ; 34(1): 113-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37351646

RESUMO

PURPOSE: To determine the frequency and possible reasons of medial migration with penetration into the acetabulum (MMPA) of the helical blade when using the Trochanteric Fixation Nail Advanced (TFNA) is used for treatment of pertrochanteric fractures. METHODS: All patients with pertrochanteric femoral fracture, treated by intramedullary femoral nailing with the TFNA, were retrospectively reviewed for MMPA of the helical blade. Epidemiological parameters, additional procedures, distance of medial migration, time from primary operation to revision as well as type of revision were assessed. RESULTS: 4 of 153 patients treated with the TFNA developed an MMPA of the helical blade (risk = 2.6%), with a mean medial migration of the blade of 11.6 mm (SD 8.8). The mean time from initial operation to revision surgery was 70 days (SD 30). All patients were revised by conversion to cemented total hip arthroplasty. CONCLUSION: MMPA of the helical blade is a rare but potentially hazardous complication of femoral nailing with the TFNA femoral nail, resulting in the necessity for revision surgery and total hip arthroplasty.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Humanos , Acetábulo/cirurgia , Pinos Ortopédicos/efeitos adversos , Fraturas do Quadril/cirurgia , Fraturas do Quadril/etiologia , Estudos Retrospectivos , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/efeitos adversos
10.
Am J Sports Med ; 51(14): 3732-3741, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37936394

RESUMO

BACKGROUND: Hinge fractures are considered risk factors for delayed or nonunion of the osteotomy gap in distal femoral osteotomies (DFOs). Limited evidence exists regarding the treatment of hinge fractures after DFO, which could improve stability and thus bone healing. PURPOSE: To (1) examine the effect of hinge fractures on the biomechanical properties of the bone-implant construct, (2) evaluate the biomechanical advantages of an additional fixation of a hinge fracture, and (3) test the biomechanical properties of different types of varisation DFOs. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 fresh-frozen human distal femora equally underwent medial closing wedge DFO or lateral opening wedge DFO using a unilateral locking compression plate. The following conditions were serially tested: (1) preserved hinge; (2) hinge fracture along the osteotomy plane; (3) screw fixation of the hinge fracture; and (4) locking T-plate fixation of the hinge fracture. Using a servo-hydraulic materials testing machine, we subjected each construct to 15 cycles of axial compression (400 N; 20 N/s) and internal and external rotational loads (10 N·m; 0.5 N·m/s) to evaluate the stiffness. The axial and torsional hinge displacement was recorded using a 3-dimensional optical measuring system. Repeated-measures 1-way analysis of variance and post hoc Bonferroni correction were used for multiple comparisons. Statistical significance was set at P < .05. RESULTS: Independent from the type of osteotomy, a fractured hinge significantly (P < .001) increased rotational displacement and reduced stiffness of the bone-implant construct, resulting in ≥1.92 mm increased displacement and ≥70% reduced stiffness in each rotational direction, while the axial stiffness remained unchanged. For both procedures, neither a screw nor a plate could restore intact rotational stiffness (P < .01), while only the plate was able to restore intact rotational displacement. However, the plate always performed better compared with the screw, with significantly higher and lower values for stiffness (+38% to +53%; P < .05) and displacement (-55% to -72%; P < .01), respectively, in ≥1 rotational direction. At the same time, the type of osteotomy did not significantly affect axial and torsional stability. CONCLUSION: Hinge fractures after medial closing wedge DFO and lateral opening wedge DFO caused decreased bone-implant construct rotational stiffness and increased fracture-site displacement. In contrast, the axial stiffness remained unchanged in the cadaveric model. CLINICAL RELEVANCE: When considering an osteosynthesis of a hinge fracture in a DFO, an additional plate fixation was the construct with the highest stiffness and least displacement, which could restore intact hinge rotational displacement.


Assuntos
Fraturas do Fêmur , Fraturas Ósseas , Humanos , Placas Ósseas , Osteotomia/métodos , Fixação Interna de Fraturas/métodos , Fêmur/cirurgia , Fenômenos Biomecânicos , Fraturas do Fêmur/cirurgia
11.
J Exp Orthop ; 10(1): 103, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815666

RESUMO

PURPOSE: Biodegradable interference screws (IFS) can be manufactured from different biomaterials. Magnesium was previously shown to possess osteoinductive properties, making it a promising material to promote graft-bone healing in anterior cruciate ligament reconstruction (ACLR). The purpose of this study was to compare IFS made from magnesium to a contemporary biocomposite IFS. METHODS: In a porcine model of ACL reconstruction, deep porcine flexor tendons were trimmed to a diameter of 8 mm, sutured in Krackow technique, and fixed with either 8 × 30 mm biocomposite IFS (Bc-IFS) or 8 × 30 mm magnesium IFS (Mg-IFS) in an 8 mm diameter bone tunnel in porcine tibiae. Cyclic loading for 1000 cycles from 0 to 250 N was applied, followed by load to failure testing. Elongation, load to failure and stiffness of the tested constructs was determined. RESULTS: After 1000 cycles at 250 N, elongation was 4.8 mm ± 1.5 in the Bc-IFS group, and 4.9 mm ± 1.5 in the Mg-IFS group. Load to failure was 649.5 N ± 174.3 in the Bc-IFS group, and 683.8 N ± 116.5 in the Mg-IFS group. Stiffness was 125.3 N/mm ± 21.9 in the Bc-IFS group, and 122.5 N/mm ± 20.3 in the Mg-IFS group. No significant differences regarding elongation, load to failure and stiffness between Bc-IFS and Mg-IFS were observed. CONCLUSION: Magnesium IFS show comparable biomechanical primary stability in comparison to biocomposite IFS and may therefore be an alternative to contemporary biodegradable IFS.

12.
J Clin Med ; 12(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37510682

RESUMO

INTRODUCTION: The Purpose of the present study was to assess the outcome of anterior cruciate ligament reconstruction (ACLR) with an accelerated rehabilitation protocol and to compare it to a conservative rehabilitation protocol. It was hypothesized that an accelerated rehabilitation protocol, including brace-free early weight bearing, would result in a higher rate of recurrent instability and revision surgery compared to a conservative rehabilitation protocol. METHODS: From 2016 to 2017, two different rehabilitation protocols for isolated ACLR were used at a high-volume knee surgery center. A total of 65 consecutive patients with isolated hamstring ACLR, of whom n = 33 had been treated with an accelerated (AccRehab) and n = 32 with a conservative rehabilitation protocol (ConRehab), were retrospectively included in the study. Patients were evaluated for recurrent instability, revision surgery, and other complications at a mean follow-up period of 64 ± 7.4 months. In addition, Tegner Activity Scale, Lysholm Score, and IKDC-subjective Score were evaluated. Statistical comparison between the two groups was performed utilizing Fisher's exact test and Student's t-test. RESULTS: Mean age (29.3 vs. 26.6 years) and preoperative Tegner Score (6.4 vs. 5.9) were comparable between both groups. At 64 ± 7.4 months after ACLR, six cases of recurrent instability were reported in the AccRehab group (18%) in comparison to three cases (9%) in the ConRehab group (p = n.s.). There was no significant difference regarding revision surgery and further complications. Furthermore, no significant difference was found between both groups regarding Tegner (5.5 ± 1.9 vs. 5.5 ± 1.2), Lysholm (93.6 ± 6.3 vs. 89.3 ± 10.7), and IKDC score (89.7 ± 7.9 vs. 86.7 ± 12.1). CONCLUSION: No significant disadvantage of an accelerated rehabilitation protocol following ACLR was found in terms of recurrent instability rate, revision surgery, or patient-reported outcome. However, a trend towards a higher reinstability rate was found for an accelerated rehabilitation protocol. Future level one trials evaluating brace-free early weight bearing following ACLR are desirable.

13.
Life (Basel) ; 13(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240824

RESUMO

INTRODUCTION: Osteochondrosis dissecans (OCD) is a disease affecting the subchondral bone and the overlying articular cartilage. The etiology is most likely a combination of biological and mechanical factors. The incidence is highest in children >12 years old and it predominantly affects the knee. In high-grade OCD lesions, free osteochondral fragments usually are refixed via titanium screws or biodegradable screws or pins. In this case, headless compression screws made from magnesium were used for refixation. CASE REPORT: A thirteen-year-old female patient with a two-year history of knee pain was diagnosed with an OCD lesion of the medial femoral condyle. After initial conservative treatment, displacement of the osteochondral fragment occurred. Refixation was performed using two headless magnesium compression screws. At the 6 months follow up, the patient was pain free, and the fragment showed progressive healing while the implants were biodegrading. DISCUSSION: Existing implants for refixation of OCD lesions either require subsequent removal or show less stability and possible inflammatory reactions. The new generation of magnesium screws used in this case did not lead to a gas release, as described for previous magnesium implants, while maintaining stability during continuous biodegradation. CONCLUSIONS: The data available to date on magnesium implants for the treatment of OCD are promising. However, the evidence on the magnesium implants in refixation surgery of OCD lesions is still limited. Further research needs to be conducted to provide data on outcomes and possible complications.

14.
Am J Sports Med ; 50(14): 3827-3831, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322386

RESUMO

BACKGROUND: The promising biomechanical stability of bone staples (BSs) in cortical fixation of tendon grafts for medial collateral ligament (MCL) reconstruction has been revealed by a previous investigation. However, it is currently unknown if the biomechanical stability of cortical fixation of tendon grafts depends on the BS design. PURPOSE: To assess the biomechanical stability of cortical fixation of tendon grafts in knee surgery using 4 different BS designs. STUDY DESIGN: Controlled laboratory study. METHODS: Cortical fixation of tendon grafts was performed in a porcine knee model at the tibial insertion area of the MCL using 4 different BS designs (n = 40): 8-mm width without spikes (n = 10), 8-mm width with spikes (n = 10), 14-mm width with spikes (n = 10), and 13 mm-wide 4-prong staples with spikes (n = 10). Specimens were mounted in a materials testing machine, and cyclic loading was applied to the tendon graft (500 cycles at 50 and 100 N, respectively), followed by load-to-failure testing. The Kruskal-Wallis test was performed for statistical analysis (P < .05), and the post hoc Dunn test was performed for multiple comparisons. RESULTS: In 4 of 10 specimens with graft fixation using BSs without spikes, slippage of the tendon underneath the BS led to failure of the construct during cyclic loading to 100 N. In the other groups, no fixation failure was observed during cyclic loading. Furthermore, graft fixation using BSs without spikes was found to have significantly more elongation during cyclic loading (8.2 ± 1.9 mm) and a lower ultimate failure load (170 ± 120 N) compared with graft fixation using narrow BSs with spikes (3.4 ± 1.2 mm [P < .0001] and 364 ± 85 N [P < .05], respectively) and graft fixation using broad BSs with spikes (4.5 ± 1.4 mm [P < .05] and 429 ± 67 N [P < .001], respectively). No statistical differences in elongation during cyclic loading or ultimate failure load were found between 4-prong staples with spikes (5.0 ± 1.3 mm and 304 ± 85 N) and narrow or broad staples with spikes. CONCLUSION: The biomechanical stability of cortical fixation of an MCL graft was comparable between each BS design with spikes (narrow, broad, and 4-prong) in a porcine knee model, whereas BSs without spikes led to failure of the fixation construct during cyclic loading in 4 of 10 specimens and increased elongation and lower ultimate failure loads in the remainder of the group. BSs without spikes may therefore not be recommended for graft fixation. CLINICAL RELEVANCE: The use of BSs can help to avoid the conflict of converging tunnels in multiligament reconstruction surgery. An implant design with spikes yields significantly higher biomechanical stability than BSs without spikes.


Assuntos
Ligamentos Colaterais , Projetos de Pesquisa , Animais , Suínos
15.
Orthop J Sports Med ; 9(7): 23259671211017880, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350302

RESUMO

BACKGROUND: The use of the interference screw (IFS) for the cortical fixation of tendon grafts in knee ligament reconstruction may lead to converging tunnels in the multiligament reconstruction setting. It is unknown whether alternative techniques using modern suture anchor (SA) or bone staple (BS) fixation provide sufficient primary stability. PURPOSE: To assess the primary stability of cortical fixation of tendon grafts for medial collateral ligament (MCL) reconstruction using modern SA and BS methods in comparison with IFS fixation. STUDY DESIGN: Controlled laboratory study. METHODS: Cortical tendon graft fixation was performed in a porcine knee model at the tibial insertion area of the MCL using 3 different techniques: IFS (n = 10), SA (n = 10), and BS (n = 10). Specimens were mounted in a materials testing machine, and cyclic loading for 1000 cycles at up to 100 N was applied to the tendon graft, followed by load-to-failure testing. Statistical analysis was performed using 1-way analysis of variance. RESULTS: There were no statistical differences in elongation during cyclic loading or peak failure load during load-to-failure testing between BS (mean ± standard deviation: 3.4 ± 1.0 mm and 376 ± 120 N, respectively) and IFS fixation (3.9 ± 1.2 mm and 313 ± 99.5 N, respectively). SA fixation was found to have significantly more elongation during cyclic loading (6.4 ± 0.9 mm; P < .0001) compared with BS and IFS fixation and lower peak failure load during ultimate failure testing (228 ± 49.0 N; P < .01) compared with BS fixation. CONCLUSION: BS and IFS fixation provided comparable primary stability in the cortical fixation of tendon grafts in MCL reconstruction, whereas a single SA fixation led to increased elongation with physiologic loads. However, load to failure of all 3 fixation techniques exceeded the loads expected to occur in the native MCL. CLINICAL RELEVANCE: The use of BS as a reliable alternative to IFS fixation for peripheral ligament reconstruction in knee surgery can help to avoid the conflict of converging tunnels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA