Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes Immun ; 21(2): 119-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115575

RESUMO

The five membered SET and MYND Domain-containing lysine methyltransferase (SMYD) family plays pivotal roles in development and proliferation. Initially characterized within the cardiovascular system, one such member, SMYD2, has been implicated as an oncogene in leukemias deriving from flawed hematopoietic stem cell (HSC) differentiation. We show here that conditional SMYD2 loss disrupts hematopoiesis at and downstream of the HSC via both apoptotic loss and transcriptional deregulation of HSC proliferation and disruption of Wnt-ß-Catenin signaling. Yet, previously documented SMYD2 cell cycle targets were unscathed. Turning our analysis to human leukemias, we observed that SMYD2 is highly expressed in CML, MLLr-B-ALL, AML, T-ALL, and B-ALL leukemias and its levels in B-ALL correlate with poor survival. SMYD2 knockdown results in apoptotic death and loss of anchorage-independent transformation of each of these hematopoietic leukemias. These data provide an underlying mechanism by which SMYD2 acts during normal hematopoiesis and as a proto-oncogene in leukemia.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia/metabolismo , Animais , Linhagem Celular Tumoral , Transplante de Células-Tronco Hematopoéticas/métodos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Leucemia/genética , Linfócitos/metabolismo , Linfócitos/fisiologia , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proto-Oncogene Mas
2.
Cell Rep ; 30(6): 1964-1981.e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049024

RESUMO

The laminar architecture of the mammalian neocortex depends on the orderly generation of distinct neuronal subtypes by apical radial glia (aRG) during embryogenesis. Here, we identify critical roles for the autism risk gene Foxp1 in maintaining aRG identity and gating the temporal competency for deep-layer neurogenesis. Early in development, aRG express high levels of Foxp1 mRNA and protein, which promote self-renewing cell divisions and deep-layer neuron production. Foxp1 levels subsequently decline during the transition to superficial-layer neurogenesis. Sustained Foxp1 expression impedes this transition, preserving a population of cells with aRG identity throughout development and extending the early neurogenic period into postnatal life. FOXP1 expression is further associated with the initial formation and expansion of basal RG (bRG) during human corticogenesis and can promote the formation of cells exhibiting characteristics of bRG when misexpressed in the mouse cortex. Together, these findings reveal broad functions for Foxp1 in cortical neurogenesis.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/fisiologia , Autorrenovação Celular/fisiologia , Humanos , Camundongos , Células-Tronco Neurais/citologia
3.
Immunohorizons ; 3(10): 447-462, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591252

RESUMO

The FOXP1 transcription factor is expressed throughout B cell development until its extinction just prior to terminal differentiation. Foxp1 nulls die of cardiac defects at midgestation, but adult rescue via fetal liver transfer led to a strong pre-B cell block. To circumvent these limitations and to investigate FOXP1 function at later stages of B cell differentiation, we generated and analyzed floxed (F) Foxp1 alleles deleted at pro-B, transitional (T) 1, and mature B cell stages. Mb-1cre-mediated deletion of Foxp1F/F confirmed its requirement for pro-B to pre-B transition. Cd21- and Cd19cre deletion led to significant reduction of germinal center formation and a second block in differentiation at the T2/marginal zone precursor stage. T-dependent and -independent immunization of FOXP1 mutants led to reduction of Ag-specific IgM, whereas responses of class-switched Abs were unimpaired. Yet, unexpectedly, plasmablast and plasma cell numbers were significantly increased by in vitro BCR stimulation of Foxp1F/F splenic follicular B cells but rapidly lost, as they were highly prone to apoptosis. RNA sequencing, gene set enrichment analysis, and chromatin immunoprecipitation sequencing analyses revealed strong enrichment for signatures related to downregulation of immune responses, apoptosis, and germinal center biology, including direct activation of Bcl6 and downregulation of Aicda/AID, the primary effector of somatic hypermutation, and class-switch recombination. These observations support a role for FOXP1 as a direct transcriptional regulator at key steps underlying B cell development in the mouse.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Fatores de Transcrição Forkhead/fisiologia , Proteínas Repressoras/fisiologia , Animais , Fatores de Transcrição Forkhead/genética , Camundongos Knockout , Proteínas Repressoras/genética
4.
Proc Natl Acad Sci U S A ; 115(35): 8799-8804, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104377

RESUMO

Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.


Assuntos
Remodelação Óssea/genética , Fatores de Transcrição Forkhead , Locomoção/genética , Mutação , Proteínas Repressoras , Crânio/metabolismo , Vocalização Animal , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Membro Posterior/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Nat Biotechnol ; 36(8): 758-764, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010674

RESUMO

Increased tryptophan (Trp) catabolism in the tumor microenvironment (TME) can mediate immune suppression by upregulation of interferon (IFN)-γ-inducible indoleamine 2,3-dioxygenase (IDO1) and/or ectopic expression of the predominantly liver-restricted enzyme tryptophan 2,3-dioxygenase (TDO). Whether these effects are due to Trp depletion in the TME or mediated by the accumulation of the IDO1 and/or TDO (hereafter referred to as IDO1/TDO) product kynurenine (Kyn) remains controversial. Here we show that administration of a pharmacologically optimized enzyme (PEGylated kynureninase; hereafter referred to as PEG-KYNase) that degrades Kyn into immunologically inert, nontoxic and readily cleared metabolites inhibits tumor growth. Enzyme treatment was associated with a marked increase in the tumor infiltration and proliferation of polyfunctional CD8+ lymphocytes. We show that PEG-KYNase administration had substantial therapeutic effects when combined with approved checkpoint inhibitors or with a cancer vaccine for the treatment of large B16-F10 melanoma, 4T1 breast carcinoma or CT26 colon carcinoma tumors. PEG-KYNase mediated prolonged depletion of Kyn in the TME and reversed the modulatory effects of IDO1/TDO upregulation in the TME.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Hidrolases/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Neoplasias/tratamento farmacológico , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral
6.
Mol Cell Biol ; 38(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038163

RESUMO

Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.

8.
Invest Ophthalmol Vis Sci ; 58(4): 1916-1929, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384713

RESUMO

Purpose: Forkhead box protein P1 (Foxp1) is a transcriptional repressor expressed in many tissues. We identified Foxp1 as a highly expressed gene in retinal progenitor cells and investigated its roles during eye development. Methods: Mouse eyes with Foxp1 gain- or loss-of-function were established in vitro and in vivo. Results: Foxp1 overexpression in retinal progenitor cells resulted in reduced rod and increased cone photoreceptors. However, retina-specific knockout of Foxp1 was not associated with retinal differentiation abnormalities. Foxp1 was highly expressed in the lens during early development, and continued to be expressed in epithelial and cortical fiber cells until adulthood. At birth, analyses of Foxp1 lens-specific knockout (Foxp1-L-CKO) mice showed no gross morphologic changes in germinal or central epithelial cell compared to the controls. However, the numbers of proliferating and apoptotic cells were significantly increased in Foxp1-L-CKO mice. In addition, clear Y-structures were not observed in either the posterior or anterior sutures of the Foxp1-L-CKO lenses. Mature lenses of Foxp1-L-CKO mice were small and opaque. The fiber cell structure in the core and the cortical fiber cell columns were disturbed in Foxp1-L-CKO mice at postnatal day 14, potentially accounting for the opacity. In addition, epithelial cells were not aligned into columns along the transition zone in Foxp1-L-CKO mice. Taken together, these results suggest that Foxp1 has a role during lens growth in epithelial and differentiating fiber cells. Conclusions: Loss of Foxp1 results in loss of suture and fiber cell alignment, which eventually causes lens opacity, suggesting that Foxp1 has a key role in establishing cortical lens architecture.


Assuntos
Catarata/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/metabolismo , RNA/genética , Proteínas Repressoras/genética , Retina/metabolismo , Animais , Catarata/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Eletrorretinografia , Fatores de Transcrição Forkhead/biossíntese , Imuno-Histoquímica , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Repressoras/biossíntese , Retina/citologia , Retina/crescimento & desenvolvimento
9.
J Clin Invest ; 127(4): 1241-1253, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240601

RESUMO

A hallmark of aged mesenchymal stem/progenitor cells (MSCs) in bone marrow is the pivot of differentiation potency from osteoblast to adipocyte coupled with a decrease in self-renewal capacity. However, how these cellular events are orchestrated in the aging progress is not fully understood. In this study, we have used molecular and genetic approaches to investigate the role of forkhead box P1 (FOXP1) in transcriptional control of MSC senescence. In bone marrow MSCs, FOXP1 expression levels declined with age in an inverse manner with those of the senescence marker p16INK4A. Conditional depletion of Foxp1 in bone marrow MSCs led to premature aging characteristics, including increased bone marrow adiposity, decreased bone mass, and impaired MSC self-renewal capacity in mice. At the molecular level, FOXP1 regulated cell-fate choice of MSCs through interactions with the CEBPß/δ complex and recombination signal binding protein for immunoglobulin κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. Loss of p16INK4A in Foxp1-deficient MSCs partially rescued the defects in replication capacity and bone mass accrual. Promoter occupancy analyses revealed that FOXP1 directly represses transcription of p16INK4A. These results indicate that FOXP1 attenuates MSC senescence by orchestrating their cell-fate switch while maintaining their replicative capacity in a dose- and age-dependent manner.


Assuntos
Células da Medula Óssea/metabolismo , Senescência Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo , Adipogenia/fisiologia , Animais , Células da Medula Óssea/citologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Osteogênese/fisiologia , Proteínas Repressoras/genética
10.
Proc Natl Acad Sci U S A ; 113(5): E577-86, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787899

RESUMO

High expression of the forkhead box P1 (FOXP1) transcription factor distinguishes the aggressive activated B cell (ABC) diffuse large B-cell lymphoma (DLBCL) subtype from the better prognosis germinal center B-cell (GCB)-DLBCL subtype and is highly correlated with poor outcomes. A genetic or functional role for FOXP1 in lymphomagenesis, however, remains unknown. Here, we report that sustained FOXP1 expression is vital for ABC-DLBCL cell-line survival. Genome-wide analyses revealed direct and indirect FOXP1 transcriptional enforcement of ABC-DLBCL hallmarks, including the classical NF-κB and MYD88 (myeloid differentiation primary response gene 88) pathways. FOXP1 promoted gene expression underlying transition of the GCB cell to the plasmablast--the transient B-cell stage targeted in ABC-DLBCL transformation--by antagonizing pathways distinctive of GCB-DLBCL, including that of the GCB "master regulator," BCL6 (B-cell lymphoma 6). Cell-line derived FOXP1 target genes that were highly correlated with FOXP1 expression in primary DLBCL accurately segregated the corresponding clinical subtypes of a large cohort of primary DLBCL isolates and identified conserved pathways associated with ABC-DLBCL pathology.


Assuntos
Linfócitos B/imunologia , Fatores de Transcrição Forkhead/fisiologia , Linfoma Difuso de Grandes Células B/imunologia , Proteínas Repressoras/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Transcrição Gênica
11.
Genes Dev ; 29(20): 2081-96, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26494785

RESUMO

Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Corpo Estriado/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Animais , Transtorno do Espectro Autista/genética , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência , Hipocampo/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/patologia , Proteínas Repressoras/genética , Comportamento Verbal/fisiologia
12.
Neuron ; 87(5): 1008-21, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26335645

RESUMO

The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position.


Assuntos
Geradores de Padrão Central/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Geradores de Padrão Central/citologia , Eletromiografia , Embrião de Mamíferos , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Periodicidade , Estatísticas não Paramétricas , Fatores de Transcrição/metabolismo
13.
PLoS One ; 10(7): e0131674, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171970

RESUMO

Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fase S , Tiorredoxinas/metabolismo
14.
PLoS One ; 10(3): e0121765, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803368

RESUMO

Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Coração/crescimento & desenvolvimento , Proteínas Musculares/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Chlorocebus aethiops , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Metilação , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima
15.
Dev Biol ; 398(2): 242-54, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25527076

RESUMO

Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.


Assuntos
Condrócitos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Osso e Ossos/metabolismo , Células COS , Calcificação Fisiológica , Chlorocebus aethiops , Condrócitos/patologia , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Extremidades/embriologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hipertrofia , Integrases/metabolismo , Camundongos Transgênicos , Ligação Proteica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
16.
PLoS Genet ; 10(10): e1004645, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330008

RESUMO

The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.


Assuntos
Separação Celular/métodos , Regulação da Expressão Gênica no Desenvolvimento , Pâncreas/citologia , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Genômica/métodos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Camundongos Mutantes , Camundongos Transgênicos , Modelos Estatísticos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição SOX9/genética , Células-Tronco/citologia , Células-Tronco/fisiologia
17.
Proc Natl Acad Sci U S A ; 111(11): E998-1006, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591644

RESUMO

The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors.


Assuntos
Proteínas de Transporte/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Proteínas Nucleares/imunologia , Animais , Linfócitos B/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Células Dendríticas/citologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Camundongos Mutantes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Stem Cell Reports ; 2(1): 26-35, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24511468

RESUMO

We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Reprogramação Celular , Senescência Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Antígenos CD15/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma
19.
Development ; 140(18): 3809-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23946441

RESUMO

Hair follicles cyclically degenerate and regenerate throughout adult life and require regular stem cell activation to drive the cycle. In the resting phase of the hair cycle, hair follicle stem cells are maintained in a quiescent state until they receive signals to proliferate. We found that the forkhead transcription factor Foxp1 is crucial for maintaining the quiescence of hair follicle stem cells. Loss of Foxp1 in skin epithelial cells leads to precocious stem cell activation, resulting in drastic shortening of the quiescent phase of the hair cycle. Conversely, overexpression of Foxp1 in keratinocytes prevents cell proliferation by promoting cell cycle arrest. Finally, through both gain- and loss-of-function studies, we identify fibroblast growth factor 18 (Fgf18) as the key downstream target of Foxp1. We show that exogenously supplied FGF18 can prevent the hair follicle stem cells of Foxp1 null mice from being prematurely activated. As Fgf18 controls the length of the quiescent phase and is a key downstream target of Foxp1, our data strongly suggest that Foxp1 regulates the quiescent stem cell state in the hair follicle stem cell niche by controlling Fgf18 expression.


Assuntos
Ciclo Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/citologia , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Contagem de Células , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Embrião de Mamíferos/citologia , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Camundongos
20.
Mol Cell Biol ; 33(9): 1768-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23438597

RESUMO

Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11a(lox/lox) deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/metabolismo , Ativação Transcricional , Recombinação V(D)J , Sequência de Aminoácidos , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Deleção de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA