Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 202: 110876, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563953

RESUMO

This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.


Assuntos
Compostos Benzidrílicos/toxicidade , Cálcio/metabolismo , Fenóis/toxicidade , Testículo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canais Iônicos , Masculino , Proteína Quinase C/metabolismo , Proteína Quinase C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Testículo/metabolismo , Peixe-Zebra/metabolismo
2.
Reprod Toxicol ; 77: 94-102, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476780

RESUMO

We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl- channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.


Assuntos
Compostos Benzidrílicos/toxicidade , Cálcio/metabolismo , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Testículo/efeitos dos fármacos , Animais , Canais Iônicos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Testículo/metabolismo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA