RESUMO
Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.
Assuntos
Córtex Cerebral , Furões , Humanos , Animais , Córtex Cerebral/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico/métodos , EletrocorticografiaRESUMO
The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and noninvasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal, and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman's rho ranging from 0.67 to 0.91), while only small, nonsignificant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms, and hence into the influence of choosing one algorithm over another.