Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112667

RESUMO

Infection is a major co-morbidity that contributes to impaired healing in diabetic wounds. Although impairments in diabetic neutrophils have been blamed for this co-morbidity, what causes these impairments and whether they can be overcome, remain largely unclear. Diabetic neutrophils, isolated from diabetic individuals, exhibit chemotaxis impairment but this peculiar functional impairment has been largely ignored because it appears to contradict the clinical findings which blame excessive neutrophil influx as a major impediment to healing in chronic diabetic ulcers. Here, we report that exposure to glucose in diabetic range results in impaired chemotaxis signaling through the formyl peptide receptor (FPR) in neutrophils, culminating in reduced chemotaxis and delayed neutrophil trafficking in the wound of Leprdb (db/db) type two diabetic mice, rendering diabetic wound vulnerable to infection. We further show that at least some auxiliary receptors remain functional under diabetic conditions and their engagement by the pro-inflammatory cytokine CCL3, overrides the requirement for FPR signaling and substantially improves infection control by jumpstarting the neutrophil trafficking toward infection, and stimulates healing in diabetic wound. We posit that CCL3 may have therapeutic potential for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process which is intended to reset chronic ulcers into acute fresh wounds.


Assuntos
Quimiotaxia de Leucócito/imunologia , Diabetes Mellitus Experimental/imunologia , Neutrófilos/patologia , Receptores de Formil Peptídeo/genética , Transdução de Sinais/imunologia , Cicatrização/imunologia , Infecção dos Ferimentos/microbiologia , Animais , Quimiocina CCL3/imunologia , Complicações do Diabetes/microbiologia , Glucose/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Receptores de Formil Peptídeo/imunologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/etiologia
2.
J Invest Dermatol ; 142(3 Pt A): 692-704.e14, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34517005

RESUMO

Persistent inflammation is a major contributor to healing impairment in diabetic chronic wounds. Paradoxically, diabetic wound environment during the acute phase of healing is completely different because it exhibits a reduced macrophage response owing to inadequate expression of CCL2 proinflammatory cytokine. What causes a reduction in CCL2 expression in diabetic wounds early after injury remains unknown. In this study, we report that in contrast to prolonged exposure to high glucose, which makes monocytes proinflammatory, short-term exposure to high glucose causes a rapid monocyte reprogramming, manifested by increased expression and secretion of IL-10, which in an autocrine/paracrine fashion reduces glucose uptake and transforms monocytes into an anti-inflammatory phenotype by dampening signaling through toll-like receptors. We show that IL-10 expression is significantly increased in diabetic wounds during the acute phase of healing, causing significant reductions in toll-like receptor signaling and proinflammatory cytokine production, delaying macrophage and leukocyte responses, and underlying healing impairment in diabetic wounds. Importantly, blocking IL-10 signaling during the acute phase of healing improves toll-like receptor signaling, increases proinflammatory cytokine production, enhances macrophage and leukocyte responses, and stimulates healing in diabetic wounds. We posit that anti-IL-10 strategies have therapeutic potential if added topically after surgical debridement, which resets chronic wounds into acute fresh wounds.


Assuntos
Diabetes Mellitus , Interleucina-10 , Quimiocinas/metabolismo , Glucose/metabolismo , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA