RESUMO
BACKGROUND: Systemic sclerosis (SSc) is a rare chronic autoimmune disease with heterogeneous manifestations. In the last decade, several clinical trials have been conducted to evaluate new treatment options for SSc. The purpose of this work is to update the recommendations of the Brazilian Society of Rheumatology in light of the new evidence available for the pharmacological management of SSc. METHODS: A systematic review including randomized clinical trials (RCTs) for predefined questions that were elaborated according to the Patient/Population, Intervention, Comparison, and Outcomes (PICO) strategy was conducted. The rating of the available evidence was performed according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. To become a recommendation, at least 75% agreement of the voting panel was needed. RESULTS: Six recommendations were elaborated regarding the pharmacological treatment of Raynaud's phenomenon, the treatment (healing) and prevention of digital ulcers, skin involvement, interstitial lung disease (ILD) and gastrointestinal involvement in SSc patients based on results available from RCTs. New drugs, such as rituximab, were included as therapeutic options for skin involvement, and rituximab, tocilizumab and nintedanib were included as therapeutic options for ILD. Recommendations for the pharmacological treatment of scleroderma renal crisis and musculoskeletal involvement were elaborated based on the expert opinion of the voting panel, as no placebo-controlled RCTs were found. CONCLUSION: These guidelines updated and incorporated new treatment options for the management of SSc based on evidence from the literature and expert opinion regarding SSc, providing support for decision-making in clinical practice.
Assuntos
Doença de Raynaud , Reumatologia , Escleroderma Sistêmico , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/tratamento farmacológico , Humanos , Brasil , Reumatologia/normas , Doença de Raynaud/tratamento farmacológico , Sociedades Médicas , Doenças Pulmonares Intersticiais/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Rituximab/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Úlcera Cutânea/etiologia , Antirreumáticos/uso terapêuticoRESUMO
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Assuntos
Galectina 4 , Lipopolissacarídeos , Oligossacarídeos , Humanos , Lipopolissacarídeos/química , Galectina 4/metabolismo , Galectina 4/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Multimerização Proteica , Ligação Proteica , Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Domínios ProteicosRESUMO
Gastrointestinal stromal tumors (GISTs) represent a rare form of gastrointestinal neoplasm. This report details a medical case involving a 44-year-old woman who underwent bilateral pheochromocytoma resection, GIST gastrectomy, and laparoscopic adrenalectomy with intestinal resection. Despite an initially positive response to oral imatinib, treatment was delayed due to economic constraints. This delay resulted in a critical event marked by abdominal GIST metastasis to the abdominal wall, subsequent rupture leading to hemoperitoneum, and emergency surgery. Following an adequate postsurgical recovery, she was successfully discharged prior to medication adjustments.
RESUMO
CD14 is an innate immune receptor that senses pathogen-associated molecular patterns, such as lipopolysaccharide, to activate the innate immune response. Although CD14 is known to be glycosylated, detailed understanding about the structural and functional significance of this modification is still missing. Herein, an NMR and MS-based study, assisted by MD simulations, has provided a 3D-structural model of glycosylated CD14. Our results reveal the existence of a key N-glycosylation site at Asn282 that exclusively contains unprocessed oligomannnose N-glycans that perfectly fit the concave cavity of the bent-solenoid shaped protein. This site is not accessible to glycosidases and is fundamental for protein folding and secretion. A second N-site at Asn151 displays mostly complex N-glycans, with the typical terminal epitopes of the host cell-line expression system (i.e. ßGal, α2,3 and α2,6 sialylated ßGal, here), but also particularities, such as the lack of core fucosylation. The glycan at this site points outside the protein surface, resulting in N-glycoforms fully exposed and available for interactions with lectins. In fact, NMR experiments show that galectin-4, proposed as a binder of CD14 on monocytes to induce their differentiation into macrophages-like cells, interacts in vitro with CD14 through the recognition of the terminal glycoepitopes on Asn151. This work provides key information about CD14 glycosylation, which helps to better understand its functional roles and significance. Although protein glycosylation is known to be dynamic and influenced by many factors, some of the features found herein (presence of unprocessed N-glycans and lack of core Fuc) are likely to be protein specific.
Assuntos
Lectinas , Polissacarídeos , Glicosilação , Polissacarídeos/química , Lectinas/metabolismo , Linhagem Celular , Lipopolissacarídeos/metabolismoRESUMO
The isolation of nucleic acids is a critical and limiting step for molecular assays, which prompted the arrival in Colombia of automated purification instruments during the SARS-CoV-2 pandemic. The local application of this technology in the study of tropical diseases, such as dengue and zika, is beginning to be tested. We evaluated the efficiency of the automated extraction of viral RNA for studies of pediatric dengue and zika. Clinical samples of children with dengue that were well characterized through RNA isolation by silica columns and serotype-specific nested RT-PCR (DENV-1 n = 7, DENV-2 n = 5, and negatives n = 8) in addition to 40 pediatric plasma samples spiked with ZIKV (strain PRVA BC59) and 209 from negative pre-epidemic children were analyzed. RNA from patients was extracted by two automated standard and high-throughput protocols on the KingFisher™ Flex instrument. The isolated RNA was evaluated for concentration and purity by spectrophotometry, for structural and functional integrity by electrophoresis and expression of the RNase P gene, and usefulness in serotype-specific DENV detection by conventional and real-time RT-PCR. For the evaluation of ZIKV RNA, the commercial TaqMan Triplex® assay was used, along with a well-tested in-house RT-qPCR assay. The concentration of RNA (5.2 vs. 7.5 ng/µL, P=0.03) and the number of integral bands (9 vs. 11) were higher with the high-throughput protocol. However, the number of specimens serotyped for DENV by RT-qPCR was comparable for both protocols. The cycle thresholds of the TaqMan Triplex® commercial kit and the in-house assay for the detection of plasma ZIKV RNA isolated with the standard protocol showed a strong association (r = 0.93, P < 0.0001) and a Cohen Kappa index of 0.98 when all 249 samples were analyzed. These preliminary results suggest that automated instruments could be used in studies of cocirculating flaviviruses that have represented a public health problem in recent decades in Colombia. They boast advantages such as efficiency, precision, time savings, and lower risk of cross-contamination.
RESUMO
Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.
RESUMO
Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.
RESUMO
Fluorine (19 F) incorporation into glycan-binding proteins (lectins) has been achieved and exploited to monitor the binding to carbohydrate ligands by nuclear magnetic resonance (NMR) spectroscopy. Galectins are a family of lectins that bind carbohydrates, generally with weak affinities, through a combination of intermolecular interactions including a key CH-π stacking involving a conserved tryptophan residue. Herein, Galectin-3 (Gal3) and Galectin-8 (Gal8) with one and two carbohydrate recognition domains (CRDs), respectively, were selected. Gal3 contains one Trp, whereas Gal8 contains three, one at each binding site and a third one not involved in sugar binding; these were substituted by the corresponding F-Trp analogues. The presence of fluorine did not significantly modify the affinity for glycan binding, which was in slow exchange on the 19 F NMR chemical-shift timescale, even for weak ligands, and allowed binding events taking place at two different binding sites within the same lectin to be individualized.
Assuntos
Flúor , Galectinas , Galectinas/metabolismo , Carboidratos , Polissacarídeos/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Galectina 3/metabolismoRESUMO
Galectins are a family of glycan binding proteins that stand out for the wide range of biological phenomena in which they are involved. Most galectin functions are associated with their glycan binding capacities, which are generally well characterized at the oligosaccharide level, but not at the glycoprotein or glycolipid level. Glycolipids form the part of cell membranes where they can act as galectin cellular receptors. In this scenario, glycan presentation as well as the membrane chemical and structural features are expected to have a strong impact in these molecular association processes. Herein, liposomes were used as membrane mimicking scaffolds for the presentation of glycosphingolipids (GSLs) and to investigate their interaction with Galectin-3 and the N-domain of Galectin-8 (Gal8N). The binding towards GM3 and GM1 and their non-silaylated GSLs was compared to the binding to the free glycans, devoid of lipid. The analysis was carried out using a combination of NMR methods, membrane perturbation studies, and molecular modeling. Our results showed a different tendency of the two galectins in their binding capacities towards the glycans, depending on whether they were free oligosaccharides or as part of GSL inserted into a lipid bilayer, highlighting the significance of GSL glycan presentation on membranes in lectin binding.
RESUMO
The coronavirus disease 2019 (COVID-19) is still spreading fast in several tropical countries after more than one year of pandemic. In this scenario, the effects of weather conditions that can influence the spread of the virus are not clearly understood. This study aimed to analyse the influence of meteorological (temperature, wind speed, humidity and specific enthalpy) and human mobility variables in six cities (Barranquilla, Bogota, Cali, Cartagena, Leticia and Medellin) from different biomes in Colombia on the coronavirus dissemination from March 25, 2020, to January 15, 2021. Rank correlation tests and a neural network named self-organising map (SOM) were used to investigate similarities in the dynamics of the disease in the cities and check possible relationships among the variables. Two periods were analysed (quarantine and post-quarantine) for all cities together and individually. The data were classified in seven groups based on city, date and biome using SOM. The virus transmission was most affected by mobility variables, especially in the post-quarantine. The meteorological variables presented different behaviours on the virus transmission in different biogeographical regions. The wind speed was one of the factors connected with the highest contamination rate recorded in Leticia. The highest new daily cases were recorded in Bogota where cold/dry conditions (average temperature <14 °C and absolute humidity >9 g/m3) favoured the contagions. In contrast, Barranquilla, Cartagena and Leticia presented an opposite trend, especially with the absolute humidity >22 g/m3. The results support the implementation of better local control measures based on the particularities of tropical regions.
Assuntos
COVID-19 , SARS-CoV-2 , Colômbia/epidemiologia , Humanos , Redes Neurais de Computação , Pandemias , Tempo (Meteorologia)RESUMO
The interaction of multi-LacNAc (Galß1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.
Assuntos
Proteínas Sanguíneas/química , Galectina 1/química , Galectinas/química , Metacrilatos/química , Polímeros/química , Acrilamidas/química , Acrilamidas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Proteínas Sanguíneas/genética , Carboidratos/química , Microscopia Crioeletrônica , Galectina 1/genética , Galectinas/genética , Humanos , Ligantes , Metacrilatos/farmacologia , Polímeros/farmacologia , Ligação Proteica/efeitos dos fármacosRESUMO
The importance of multivalency for N-glycan-protein interactions has primarily been studied by attachment of minimal epitopes to artificial multivalent scaffold and not in the context of multi-antennary glycans. N-glycans can be modified by bisecting GlcNAc, core xylosides and fucosides, and extended N-acetyl lactosamine moieties. The impact of such modifications on glycan recognition are also not well understood. We describe here a chemoenzymatic methodology that can provide N-glycans expressed by the parasitic worm S. mansoni having unique epitopes at each antenna and containing core xyloside. NMR, computational and electron microscopy were employed to investigate recognition of the glycans by the human lectin DC-SIGN. It revealed that core xyloside does not influence terminal epitope recognition. The multi-antennary glycans bound with higher affinity to DC-SIGN compared to mono-valent counterparts, which was attributed to proximity-induced effective concentration. The multi-antennary glycans cross-linked DC-SIGN into a dense network, which likely is relevant for antigen uptake and intracellular routing.
Assuntos
Epitopos/química , Lectinas/análise , Polissacarídeos/química , Schistosoma mansoni/química , Animais , Humanos , Polissacarídeos/síntese químicaRESUMO
A combined chemo-enzymatic synthesis/NMR-based methodology is presented to identify, in unambiguous manner, the distinctive binding epitope within repeating sugar oligomers when binding to protein receptors. The concept is based on the incorporation of 13 C-labels at specific monosaccharide units, selected within a repeating glycan oligomeric structure. No new chemical tags are added, and thus the chemical entity remains the same, while the presence of the 13 C-labeled monosaccharide breaks the NMR chemical shift degeneracy that occurs in the non-labeled compound and allows the unique identification of the different components of the oligomer. The approach is demonstrated by a proof-of-concept study dealing with the interaction of a polylactosamine hexasaccharide with five different galectins that display distinct preferences for these entities.
Assuntos
Amino Açúcares/química , Epitopos/química , Galectinas/química , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química , Sítios de Ligação , Isótopos de CarbonoRESUMO
The interaction of human galectin-8 and its two separate N-terminal and C-terminal carbohydrate recognition domains (CRD) to their natural ligands has been analysed using a synergistic combination of experimental NMR and ITC methods, and molecular dynamics simulations. Both domains bind the minimal epitopes N-acetyllactosamine (1) and Galß1-3GalNAc (2) in a similar manner. However, the N-terminal and C-terminal domains show exquisite and opposing specificity to bind either Neu5Ac- or Fuc-containing ligands, respectively. Moreover, the addition of the high-affinity ligands specific for one of the CRDs does not make any effect on the binding at the alternative one. Thus, the two CRDs behave independently and may simultaneously target different molecular entities to promote clustering through the generation of supramolecular assemblies.
RESUMO
Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.
Assuntos
Proteínas de Bactérias/química , Glutamato Desidrogenase/química , Mycobacterium smegmatis/enzimologia , Proteínas Recombinantes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Cristalografia por Raios X , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/ultraestrutura , Cinética , Modelos Moleculares , Mycobacterium smegmatis/genética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestruturaRESUMO
The tandem-repeat Galectin-4 (Gal-4) contains two different domains covalently linked through a short flexible peptide. Both domains have been shown to bind preferentially to A and B histo blood group antigens with different affinities, although the binding details are not yet available. The biological relevance of these associations is unknown, although it could be related to its attributed role in pathogen recognition. The presentation of A and B histo blood group antigens in terms of peripheral core structures differs among tissues and from that of the antigen-mimicking structures produced by pathogens. Herein, the binding of the N-terminal domain of Gal-4 toward a group of differently presented A and B oligosaccharide antigens in solution has been studied through a combination of NMR, isothermal titration calorimetry (ITC), and molecular modeling. The data presented in this paper allow the identification of the specific effects that subtle chemical modifications within this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of affinity and intermolecular interactions, providing a structural-based rationale for the observed trend in the binding preferences.
RESUMO
Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognize Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray; among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a nonsubstituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.
Assuntos
Glicoproteínas , Schistosoma mansoni , Animais , Proteínas de Ligação a DNA , Epitopos/química , Fucose/metabolismo , Glicoproteínas/metabolismo , Humanos , Imunoglobulina M , Mamíferos/metabolismo , Proteínas de Membrana , Camundongos , Polissacarídeos/química , Schistosoma mansoni/química , Schistosoma mansoni/metabolismoRESUMO
The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13 C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15 N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.
Assuntos
Enzima de Conversão de Angiotensina 2/química , Lectinas Tipo C/química , Modelos Moleculares , Polissacarídeos/química , Receptores de Coronavírus/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo , Ligação Proteica , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.
Assuntos
Galectina 1 , Polissacarídeos , Sítios de Ligação , Galectina 1/química , Galectina 1/metabolismo , Humanos , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação ProteicaRESUMO
Fluorinated glycomimetics are frequently employed to study and eventually modulate protein-glycan interactions. However, complex glycans and their glycomimetics may display multiple binding epitopes that enormously complicate the access to a complete picture of the protein-ligand complexes. We herein present a new methodology based on the synergic combination of experimental 19F-based saturation transfer difference (STD) NMR data with computational protocols, applied to analyze the interaction between DC-SIGN, a key lectin involved in inflammation and infection events with the trifluorinated glycomimetic of the trimannoside core, ubiquitous in human glycoproteins. A novel 2D-STD-TOCSYreF NMR experiment was employed to obtain the experimental STD NMR intensities, while the Complete Relaxation Matrix Analysis (CORCEMA-ST) was used to predict that expected for an ensemble of geometries extracted from extensive MD simulations. Then, an in-house built computer program was devised to find the ensemble of structures that provide the best fit between the theoretical and the observed STD data. Remarkably, the experimental STD profiles obtained for the ligand/DC-SIGN complex could not be satisfactorily explained by a single binding mode, but rather with a combination of different modes coexisting in solution. Therefore, the method provides a precise view of those ligand-receptor complexes present in solution.