Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594765

RESUMO

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

2.
JHEP Rep ; 6(1): 100918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192540

RESUMO

Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.

3.
Hepatology ; 79(5): 1158-1179, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811413

RESUMO

Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.


Assuntos
Hepatopatias , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Transcriptoma , Metabolômica
4.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527658

RESUMO

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Assuntos
Neoplasias Hepáticas , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Jejum , Trifosfato de Adenosina/metabolismo , Metionina Adenosiltransferase/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
5.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541251

RESUMO

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Glucose/metabolismo
6.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Hepatology ; 77(5): 1654-1669, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921199

RESUMO

BACKGROUND AND AIMS: Recent studies suggest that mitochondrial dysfunction promotes progression to NASH by aggravating the gut-liver status. However, the underlying mechanism remains unclear. Herein, we hypothesized that enhanced mitochondrial activity might reshape a specific microbiota signature that, when transferred to germ-free (GF) mice, could delay NASH progression. APPROACH AND RESULTS: Wild-type and methylation-controlled J protein knockout (MCJ-KO) mice were fed for 6 weeks with either control or a choline-deficient, L-amino acid-defined, high-fat diet (CDA-HFD). One mouse of each group acted as a donor of cecal microbiota to GF mice, who also underwent the CDA-HFD model for 3 weeks. Hepatic injury, intestinal barrier, gut microbiome, and the associated fecal metabolome were then studied. Following 6 weeks of CDA-HFD, the absence of methylation-controlled J protein, an inhibitor of mitochondrial complex I activity, reduced hepatic injury and improved gut-liver axis in an aggressive NASH dietary model. This effect was transferred to GF mice through cecal microbiota transplantation. We suggest that the specific microbiota profile of MCJ-KO, characterized by an increase in the fecal relative abundance of Dorea and Oscillospira genera and a reduction in AF12 , Allboaculum , and [ Ruminococcus ], exerted protective actions through enhancing short-chain fatty acids, nicotinamide adenine dinucleotide (NAD + ) metabolism, and sirtuin activity, subsequently increasing fatty acid oxidation in GF mice. Importantly, we identified Dorea genus as one of the main modulators of this microbiota-dependent protective phenotype. CONCLUSIONS: Overall, we provide evidence for the relevance of mitochondria-microbiota interplay during NASH and that targeting it could be a valuable therapeutic approach.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
8.
Nat Commun ; 13(1): 6816, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433951

RESUMO

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Assuntos
Acetaminofen , Proteínas de Transporte de Cátions , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Magnésio , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ciclinas/genética , Ciclinas/metabolismo , Hepatopatias/sangue , Hepatopatias/genética , Hepatopatias/prevenção & controle , Magnésio/sangue , Magnésio/uso terapêutico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
9.
Cell Death Discov ; 8(1): 316, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831294

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has reached 5.5 million deaths worldwide, generating a huge impact globally. This highly contagious viral infection produces a severe acute respiratory syndrome that includes cough, mucus, fever and pneumonia. Likewise, many hospitalized patients develop severe pneumonia associated with acute respiratory distress syndrome (ARDS), along an exacerbated and uncontrolled systemic inflammation that in some cases induces a fatal cytokine storm. Although vaccines clearly have had a beneficial effect, there is still a high percentage of unprotected patients that develop the pathology, due to an ineffective immune response. Therefore, a thorough understanding of the modulatory mechanisms that regulate the response to SARS-CoV-2 is crucial to find effective therapeutic alternatives. Previous studies describe the relevance of Neddylation in the activation of the immune system and its implications in viral infection. In this context, the present study postulates Neddylation, a reversible ubiquitin-like post-translational modification of proteins that control their stability, localization and activity, as a key regulator in the immune response against SARS-CoV-2. For the first time, we describe an increase in global neddylation levels in COVID-19 in the serum of patients, which is particularly associated with the early response to infection. In addition, the results showed that overactivation of neddylation controls activation, proliferation, and response of peripheral blood mononuclear cells (PBMCs) isolated from COVID-19 patients. Inhibition of neddylation, and the subsequent avoidance of activated PBMCs, reduces cytokine production, mainly IL-6 and MCP-1 and induce proteome modulation, being a critical mechanism and a potential approach to immunomodulate COVID-19 patients.

10.
Gastroenterol Hepatol ; 45(9): 724-734, 2022 Nov.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35248669

RESUMO

This is a meeting report of the 3rd Translational Hepatology Meeting held in Alicante, Spain, in October 2021. The meeting, which was organized by the Spanish Association for the Study of the Liver (AEEH), provided an update on the recent advances in the field of basic and translational hepatology, with a particular focus on the molecular and cellular mechanisms and therapeutic targets involved in metabolic-associated fatty liver disease (MAFLD), metabolic-associated steatohepatitis (MASH), cirrhosis and end-stage hepatocellular carcinoma (HCC).


Assuntos
Carcinoma Hepatocelular , Gastroenterologia , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/complicações , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia
11.
Nat Commun ; 13(1): 1096, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232994

RESUMO

Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.


Assuntos
Tecido Adiposo Marrom , Resistência à Insulina , Metionina Adenosiltransferase , Obesidade , Oligonucleotídeos Antissenso , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Fígado/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia
12.
J Hepatol ; 77(1): 15-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167910

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Assuntos
Carnitina O-Palmitoiltransferase , Células Estreladas do Fígado , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colina , Ácidos Graxos/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos
13.
Front Endocrinol (Lausanne) ; 13: 1058101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589817

RESUMO

The homeostasis of the most important nitrogen-containing intermediates, ammonia and glutamine, is a tightly regulated process in which the gut-liver axis plays a central role. Several studies revealed that nitrogen metabolism is altered in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), a consensus-driven novel nomenclature for Non-Alcoholic Fatty Liver Disease (NAFLD), the most common chronic liver disease worldwide. Both increased ammonia production by gut microbiota and decreased ammonia hepatic removal due to impaired hepatic urea cycle activity or disrupted glutamine synthetase activity may contribute to hepatic ammonia accumulation underlying steatosis, which can eventually progress to hyperammonemia in more advanced stages of steatohepatitis and overt liver fibrosis. Furthermore, our group recently showed that augmented hepatic ammoniagenesis via increased glutaminase activity and overexpression of the high activity glutaminase 1 isoenzyme occurs in Fatty Liver Disease. Overall, the improved knowledge of disrupted nitrogen metabolism and metabolic miscommunication between the gut and the liver suggests that the reestablishment of altered gut-liver axis nitrogenous balance is an appealing and attractive therapeutic approach to tackle Fatty Liver Disease, a growing and unmet health problem.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glutaminase/metabolismo , Nitrogênio , Amônia/metabolismo
14.
J Hepatol ; 76(1): 11-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Fígado Gorduroso/prevenção & controle , Mitocôndrias Hepáticas/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias Hepáticas/fisiologia , Proteômica/métodos , Enzimas de Conjugação de Ubiquitina/farmacologia
15.
Hepatology ; 75(3): 550-566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510498

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Assuntos
Fígado Gorduroso/metabolismo , Regeneração Hepática/fisiologia , Ativação de Macrófagos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Chaperonas Moleculares , Traumatismo por Reperfusão/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Inativação Gênica/fisiologia , Rejeição de Enxerto/prevenção & controle , Fígado/metabolismo , Transplante de Fígado/métodos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Traumatismo por Reperfusão/prevenção & controle
16.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G603-G616, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585619

RESUMO

In patients, advanced cirrhosis only regresses partially once the etiological agent is withdrawn. Animal models for advanced cirrhosis regression are missing. Lifestyle interventions (LIs) have been shown to improve steatosis, inflammation, fibrosis, and portal pressure (PP) in liver disease. We aimed at characterizing cirrhosis regression after etiological agent removal in experimental models of advanced cirrhosis and to study the impact of different LI on it. Advanced cirrhosis was induced in rats either by carbon tetrachloride (CCl4) or by thioacetamide (TAA) administration. Systemic and hepatic hemodynamics, liver fibrosis, hepatic stellate cell (HSC) activation, hepatic macrophage infiltration, and metabolic profile were evaluated after 48 h, 4 wk or 8 wk of etiological agent removal. The impact of LI consisting in caloric restriction (CR) or moderate endurance exercise (MEE) during the 8-wk regression process was analyzed. The effect of MEE was also evaluated in early cirrhotic and in healthy rats. A significant reduction in portal pressure (PP), liver fibrosis, and HSC activation was observed during regression. However, these parameters remained above those in healthy animals. During regression, animals markedly worsened their metabolic profile. CR although preventing those metabolic disturbances did not further reduce PP, hepatic fibrosis, or HSC activation. MEE also prevented metabolic disturbances, without enhancing, but even attenuating the reduction of PP, hepatic fibrosis, and HSC activation achieved by regression. MEE also worsened hepatic fibrosis in early-TAA cirrhosis and in healthy rats.NEW & NOTEWORTHY We have developed two advanced cirrhosis regression experimental models with persistent relevant fibrosis and portal hypertension and an associated deteriorated metabolism that mimic what happens in patients. LI, despite improving metabolism, did not enhance the regression process in our cirrhotic models. CR did not further reduce PP, hepatic fibrosis, or HSC activation. MEE exhibited a profibrogenic effect in the liver blunting cirrhosis regression. One of the potential explanations of this worsening could be ammonia accumulation.


Assuntos
Restrição Calórica , Doença Hepática Induzida por Substâncias e Drogas/terapia , Ingestão de Energia , Terapia por Exercício , Estilo de Vida Saudável , Cirrose Hepática Experimental/terapia , Fígado/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Hipertensão Portal/terapia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Resistência Física , Ratos Wistar , Comportamento de Redução do Risco , Tioacetamida , Fatores de Tempo
17.
Mol Metab ; 53: 101275, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153521

RESUMO

OBJECTIVE: Neddylation is a druggable and reversible ubiquitin-like post-translational modification upregulated in many diseases, including liver fibrosis, hepatocellular carcinoma, and more recently, non-alcoholic fatty liver disease (NAFLD). Herein, we propose to address the effects of neddylation inhibition and the underlying mechanisms in pre-clinical models of NAFLD. METHODS: Hepatic neddylation measured by immunohistochemical analysis and NEDD8 serum levels measured by ELISA assay were evaluated in NAFLD clinical and pre-clinical samples. The effects of neddylation inhibition by using a pharmacological small inhibitor, MLN4924, or molecular approaches were assessed in isolated mouse hepatocytes and pre-clinical mouse models of diet-induced NAFLD, male adult C57BL/6 mice, and the AlfpCre transgenic mice infected with AAV-DIO-shNedd8. RESULTS: Neddylation inhibition reduced lipid accumulation in oleic acid-stimulated mouse primary hepatocytes and ameliorated liver steatosis, preventing lipid peroxidation and inflammation in the mouse models of diet-induced NAFLD. Under these conditions, increased Deptor levels and the concomitant repression of mTOR signaling were associated with augmented fatty acid oxidation and reduced lipid content. Moreover, Deptor silencing in isolated mouse hepatocytes abolished the anti-steatotic effects mediated by neddylation inhibition. Finally, serum NEDD8 levels correlated with hepatic neddylation during the disease progression in the clinical and pre-clinical models CONCLUSIONS: Overall, the upregulation of Deptor, driven by neddylation inhibition, is proposed as a novel effective target and therapeutic approach to tackle NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Idoso , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Transdução de Sinais , Adulto Jovem
18.
Cell Death Dis ; 12(6): 555, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050139

RESUMO

Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.


Assuntos
Neoplasias Hepáticas/genética , MicroRNAs/antagonistas & inibidores , Mitocôndrias/metabolismo , Animais , Apoptose , Morte Celular , Feminino , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus
19.
JHEP Rep ; 3(3): 100276, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997750

RESUMO

BACKGROUND & AIMS: Mitochondria are the major organelles for the formation of reactive oxygen species (ROS) in the cell, and mitochondrial dysfunction has been described as a key factor in the pathogenesis of cholestatic liver disease. The methylation-controlled J-protein (MCJ) is a mitochondrial protein that interacts with and represses the function of complex I of the electron transport chain. The relevance of MCJ in the pathology of cholestasis has not yet been explored. METHODS: We studied the relationship between MCJ and cholestasis-induced liver injury in liver biopsies from patients with chronic cholestatic liver diseases, and in livers and primary hepatocytes obtained from WT and MCJ-KO mice. Bile duct ligation (BDL) was used as an animal model of cholestasis, and primary hepatocytes were treated with toxic doses of bile acids. We evaluated the effect of MCJ silencing for the treatment of cholestasis-induced liver injury. RESULTS: Elevated levels of MCJ were detected in the liver tissue of patients with chronic cholestatic liver disease when compared with normal liver tissue. Likewise, in mouse models, the hepatic levels of MCJ were increased. After BDL, MCJ-KO animals showed significantly decreased inflammation and apoptosis. In an in vitro model of bile-acid induced toxicity, we observed that the loss of MCJ protected mouse primary hepatocytes from bile acid-induced mitochondrial ROS overproduction and ATP depletion, enabling higher cell viability. Finally, the in vivo inhibition of the MCJ expression, following BDL, showed reduced liver injury and a mitigation of the main cholestatic characteristics. CONCLUSIONS: We demonstrated that MCJ is involved in the progression of cholestatic liver injury, and our results identified MCJ as a potential therapeutic target to mitigate the liver injury caused by cholestasis. LAY SUMMARY: In this study, we examine the effect of mitochondrial respiratory chain inhibition by MCJ on bile acid-induced liver toxicity. The loss of MCJ protects hepatocytes against apoptosis, mitochondrial ROS overproduction, and ATP depletion as a result of bile acid toxicity. Our results identify MCJ as a potential therapeutic target to mitigate liver injury in cholestatic liver diseases.

20.
Front Immunol ; 12: 640869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679803

RESUMO

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common form of chronic liver disease. The histological spectrum of NAFLD ranges from simple steatosis to chronic inflammation and liver fibrosis during Non-Alcoholic Steatohepatitis (NASH). The current view is that innate immune mechanisms represent a key element in supporting hepatic inflammation in NASH. Natural Killer (NK) cells are lymphoid cells and a component of the innate immune system known to be involved in NASH progression. Increasing evidence has shed light on the differential function of circulating and tissue-resident NK cells, as well as on the relevance of metabolism and the microenvironment in regulating their activity. Here, we revisit the complex role of NK cells as regulators of NASH progression as well as potential therapeutic approaches based on their modulation.


Assuntos
Células Matadoras Naturais/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA