Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
J Control Release ; 368: 797-807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350493

RESUMO

Tracking drug disposition in the skin in a non-destructive and at least semi-quantitative fashion is a relevant objective for the assessment of local (cutaneous) bioavailability. Confocal Raman spectroscopy has been shown potentially useful in this regard and, importantly, recent advances have enabled the presence of applied chemicals in the viable epidermis below the stratum corneum (SC) to be determined without ambiguity and having addressed the challenges of (a) background signals from endogenous species and noise and (b) signal attenuation due to absorption and scattering. This study aimed to confirm these observations using a different vibrational spectroscopy approach - specifically, stimulated Raman scattering (SRS) microscopy - and the more conventional in vitro skin penetration test (IVPT). SRS is a nonlinear optical imaging technique which enables more precise location of the skin surface and enhanced skin depth resolution relative to confocal Raman microscopy. The method can also probe larger areas of the sample under investigation and identify the localization of the permeating chemical in specific structural components of the skin. Here, SRS was shown capable of tracking the uptake and distribution of 4-cyanophenol (CP), the same model compound used in the recent confocal Raman investigation, at depths beyond the SC following skin treatment with different vehicles and for different times. The SRS results correlated well with those from the confocal Raman experiments, and both were consistent with independent IVPT measurements. Acquired images clearly delineated CP preference for the intercellular lipid layers of the SC relative to the corneocytes. The stage is now set to apply these and other correlative techniques to examine commercial drug products.


Assuntos
Epiderme , Pele , Pele/metabolismo , Epiderme/metabolismo , Absorção Cutânea , Microscopia Confocal/métodos , Microscopia Óptica não Linear , Análise Espectral Raman/métodos
3.
Pharmaceutics ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38258083

RESUMO

Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active through channels created by nail microporation. Following solubility tests, aqueous gels and thermogels based on hydroxypropylmethylcellulose and poloxamer 407, respectively, were loaded with 8% and 16% ciclopirox. Their performance was then compared to the marketed lacquer Micolamina® in in vitro release tests with artificial membranes and in in vitro permeation tests with human nail clippings with and without poration. Finally, a microbiological assay compared the best gel formulations and the reference product. Little correlation was observed between the in vitro release and the permeation data, and the drug release was highly membrane-dependent. Ciclopirox nail retention in single-dose, porated nails tests was larger than in daily-dosing, non-porated nail conditions. The series of new gel and thermogel vehicles delivered ciclopirox more effectively than Micolamina® in single-dose, porated nail experiments. The inhibition of Trichophyton rubrum activity was significantly increased with microporated nails when the gel formulations were applied but not with Micolamina®. Overall, the results suggest that the new vehicles could be successfully combined with nail microporation to improve the drug delivery and efficacy of topical antifungal medication while reducing the dosing frequency, facilitating patients' adherence.

4.
Mol Pharm ; 21(1): 234-244, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060844

RESUMO

Assessing drug disposition in the skin after the application of a topical formulation is difficult. It is hypothesized that reverse iontophoresis (RI), which can extract charged/polar molecules for monitoring purposes, may provide a noninvasive approach for the assessment of local drug bioavailability. The passive and RI extraction of salicylic acid (SA) and nicotine (NIC) from porcine skin in vitro was assessed after a simple solution of the former and a transdermal patch of the latter had been applied for 24 and 8 h, respectively. Immediately after this "passive skin loading", the amount of drug in the stratum corneum (SC) and "viable" tissue (VT) was measured either (a) after tape-stripping and subsequent solvent extraction of both skin layers or (b) following RI extraction over 4 h. Parallel experiments were then performed in vivo in healthy volunteers; in this case, the VT was not sampled and the skin loading period for NIC was only 4 h. RI extraction of both drugs was significantly higher (in vitro and in vivo) than that achieved passively, and the cumulative RI extraction profiles as a function of time were mathematically analyzed using a straightforward compartmental model. Best-fit estimates of drug amounts in the SC and VT (ASC,0 and AVT,0, respectively) at the end of "loading" and two first-order rate constants describing transfer between the model compartments were then determined. The in vitro predictions of ASC,0 and AVT,0 were in excellent agreement with the experimental results, as was the value of the former in vivo. The rate constants derived from the in vitro and in vivo results were also similar. In summary, the results provide proof-of-concept that the RI method has the potential to noninvasively assess relevant metrics of drug bioavailability in the skin.


Assuntos
Iontoforese , Pele , Suínos , Animais , Humanos , Iontoforese/métodos , Disponibilidade Biológica , Pele/metabolismo , Absorção Cutânea , Epiderme
5.
Mol Pharm ; 20(11): 5910-5920, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801410

RESUMO

Confocal Raman spectroscopy is being assessed as a tool with which to quantify the rate and extent of drug uptake to and its clearance from target sites of action within the viable epidermis below the skin's stratum corneum (SC) barrier. The objective of this research was to confirm that Raman can interrogate drug disposition within the living layers of the skin (where many topical drugs elicit their pharmacological effects) and to identify procedures by which Raman signal attenuation with increasing skin depth may be corrected and normalized so that metrics descriptive of topical bioavailability may be identified. It was first shown in experiments on skin cross-sections parallel to the skin surface that the amide I signal, originating primarily from keratin, was quite constant with depth into the skin and could be used to correct for signal attenuation when confocal Raman data were acquired in a "top-down" fashion. Then, using 4-cyanophenol (CP) as a model skin penetrant with a strong Raman-active C≡N functionality, a series of uptake and clearance experiments, performed as a function of time, demonstrated clearly that normalized spectroscopic data were able to detect the penetrant to at least 40-80 µm into the skin and to distinguish the disposition of CP from different vehicles. Metrics related to local bioavailability (and potentially bioequivalence) included areas under the normalized C≡N signal versus depth profiles and elimination rate constants deduced post-removal of the formulations. Finally, Raman measurements were made with an approved dermatological drug, crisaborole, for which delivery from a fully saturated formulation into the skin layers just below the SC was detectable.


Assuntos
Absorção Cutânea , Análise Espectral Raman , Análise Espectral Raman/métodos , Pele/metabolismo , Epiderme/metabolismo , Disponibilidade Biológica , Microscopia Confocal/métodos
6.
RSC Adv ; 13(17): 11261-11268, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37057274

RESUMO

Plant metabolic profiling can provide a wealth of information regarding the biochemical status of the organism, but sample acquisition typically requires an invasive and/or destructive extraction process. Reverse iontophoresis (RI) imposes a small electric field across a biological membrane to substantially enhance the transport of charged and polar compounds and has been employed, in particular, to extract biomarkers of interest across human skin. The objective of this work was to examine the capability of RI to sample phytochemicals in a minimally invasive fashion in fructo (i.e., from the intact fruit). RI was principally used to extract a model, bioactive compound - specifically, ellagic acid - from the fruit peel of Punica granatum L. The RI sampling protocol was refined using isolated peel, and a number of experimental factors were examined and optimised, including preparation of the peel samples, the current intensity applied and the pH of the medium into which samples were collected. The most favourable conditions (3 mA current for a period of 1 hour, into a buffer at pH 7.4) were then applied to the successful RI extraction of ellagic acid from intact pomegranates. Multiple additional phytochemicals were also extracted and identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). A successful proof-of-concept has been achieved, demonstrating the capability to non-destructively extract phytochemicals of interest from intact fruit.

7.
Mol Pharm ; 20(5): 2527-2535, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053523

RESUMO

Evaluation of the bioavailability of drugs intended to act within the skin following the application of complex topical products requires the application of multiple experimental tools, which must be quantitative, validated, and, ideally and ultimately, sufficiently minimally invasive to permit use in vivo. The objective here is to show that both infrared (IR) and Raman spectroscopies can assess the uptake of a chemical into the stratum corneum (SC) that correlates directly with its quantification by the adhesive tape-stripping method. Experiments were performed ex vivo using excised porcine skin and measured chemical disposition in the SC as functions of application time and formulation composition. The quantity of chemicals in the SC removed on each tape-strip was determined from the individually measured IR and Raman signal intensities of a specific molecular vibration at a frequency where the skin is spectroscopically silent and by a subsequent conventional extraction and chromatographic analysis. Correlations between the spectroscopic results and the chemical quantification on the tape-strips were good, and the effects of longer application times and the use of different vehicles were clearly delineated by the different measurement techniques. Based on this initial investigation, it is now possible to explore the extent to which the spectroscopic approach (and Raman in particular) may be used to interrogate chemical disposition deeper in the skin and beyond the SC.


Assuntos
Pele , Vibração , Animais , Suínos , Pele/metabolismo , Epiderme , Absorção Cutânea , Análise Espectral Raman
8.
Int J Sport Nutr Exerc Metab ; 33(2): 93-101, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087103

RESUMO

Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a single-blind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14-20] units vs. 17 [14-20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., >10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.


Assuntos
Desempenho Atlético , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Consumo de Oxigênio , Fosfatos/farmacologia , Resistência Física , Método Simples-Cego , Sódio , Cloreto de Sódio
9.
Phytochem Anal ; 34(4): 408-413, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971356

RESUMO

For the commercial-scale isolation of phytochemicals, a suitable plant biomass source (including species, origin, growing season, etc.) must be identified, and frequent analytical verification is required to ensure that the phytochemicals are present at predefined minimum threshold concentrations. While the latter are typically assessed in the laboratory, a more efficient and less resource-intensive approach would involve non-destructive and environmentally friendly measurements in situ. Reverse iontophoretic (RI) sampling offers a potential solution to this challenge. OBJECTIVE: We aimed to demonstrate the non-destructive, RI sampling of phytochemicals of interest from biomass from four different sources. MATERIALS AND METHODS: RI experiments were performed in side-by-side diffusion cells using a current density of 0.5 mA/cm2 , for a predetermined time in a defined pH environment, using (1) fresh leaves from Mangifera indica and Centella asiatica and (2) isolated peel from Punica granatum and Citrus sinensis. RESULTS: Mangiferin, madecassoside, punicalagin, ellagic acid, and hesperidin were extracted from the different biomasses by RI. The amounts extracted ranged from 0.03 mg/100 mg of biomass for the cathodal extraction of madecassoside to 0.63 mg/100 mg of biomass for the anodal extraction of punicalagin. A linear relationship (r2  = 0.73) between the RI-extracted quantities of punicalagin and those determined using conventional methods was demonstrated. CONCLUSION: The non-destructive, in situ measurement of phytochemical levels by RI represents a feasible approach for timing the harvesting process.


Assuntos
Centella , Citrus sinensis , Mangifera , Punica granatum , Extratos Vegetais , Compostos Fitoquímicos
11.
Int J Pharm ; 614: 121469, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35031414

RESUMO

An important question in the development of a dermatological drug product is whether a target concentration has been achieved in, for example, the viable epidermis following topical administration. When attempting to address this challenge, it is essential to consider the role of excipients in the formulation that may influence drug partitioning and diffusion in the different layers of the skin. The objective, therefore, was to correlate, in human subjects, the skin pharmacokinetics of diclofenac (specifically, its uptake into and clearance from the stratum corneum (SC)) from an approved drug product (Voltaren® medicated plaster) with the in vivo co-uptake of two key excipients, namely propylene glycol and butylene glycol. SC sampling was used to assess diclofenac input into the skin during patch application, and its subsequent clearance post-removal of the delivery system. In parallel the uptake of the two glycol excipients was also measured. Drug and excipient amounts in the SC increased with time of application up to 6 h and, for diclofenac, no further increase was observed when the administration was prolonged to 12 h. When the plaster was removed after 6 h of wear, diclofenac cleared relatively slowly from the SC suggesting that drug binding with a slow off-rate had occurred. The results indicate that the optimisation of drug delivery from a topical formulation must take into account the disposition of key excipients and their impact on dermato-pharmacokinetics in general.


Assuntos
Diclofenaco , Excipientes , Absorção Cutânea , Administração Cutânea , Diclofenaco/farmacocinética , Excipientes/farmacocinética , Humanos , Pele/metabolismo
12.
Drug Deliv Transl Res ; 12(4): 851-861, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34599470

RESUMO

Predicting the dermal bioavailability of topically delivered drugs is challenging. In this work, minimally invasive stratum corneum (SC) sampling was used to quantify the delivery of betamethasone valerate (BMV) into the viable skin. Betnovate® cream (0.1% w/w BMV) was applied at three doses (2, 5, and 10 mg cm-2) to the ventral forearms of 12 healthy volunteers. The mass of drug in the SC was measured using a validated tape-stripping method (a) after a 4-h "uptake" period, and (b) following a 6-h "clearance" period subsequent to cream removal. Concomitantly, the skin blanching responses to the same doses were assessed with a chromameter over 22 h post-application. BMV uptake into the SC was significantly higher for the 5 mg cm-2 dose compared to those of 2 and 10 mg cm-2. In all cases, ~30% of the drug in the SC at the end of the uptake period was cleared in the subsequent 6 h. From the SC sampling data, the average drug flux into the viable epidermis and its first-order elimination rate constant from the SC were estimated as 4 ng cm-2 h-1 and 0.07 h-1, respectively. In contrast, skin blanching results were highly variable and insensitive to the dose of cream applied. The SC sampling method was able to detect a 50% difference between two applied doses with 80% power; detection of a 20% difference would require a larger sample size. SC sampling enabled quantitative metrics describing corticosteroid delivery to the viable epidermis to be determined.


Assuntos
Glucocorticoides , Absorção Cutânea , Valerato de Betametasona , Epiderme , Humanos , Pele/metabolismo
13.
Pharmaceutics ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34452122

RESUMO

Dermatophytosis is a fungal infection of skin, nails and hair. Treatments can be long and infections are often recurrent, and novel treatments are desirable. Here we tested the use of polymeric films that can be sprayed on the skin for the prevention and treatment of dermatophytosis. The two polymers selected were ABIL T Quat 60 and Eudragit E100, which were tested ex vivo using a porcine skin model, and in vitro using microbiological and microscopy techniques. Acceptability of the polymeric films was tested on the skin of healthy volunteers. The results showed that ABIL and Eudragit films prevented and treated fungal skin infections. Whilst polymer films may provide a physical barrier that prevents fungal colonization, it was shown that both polymers are active antifungals ex vivo and in vitro and have intrinsic antifungal activity. For ABIL, we also established that this polymer binds essential nutrients such as metal ions and sugars, thereby restricting the growth of fungi. When applied to healthy subjects' skin, the polymeric films neither modified the skin color nor increased trans-epidermal water loss, suggesting a low potential for skin irritation, and the approach was generally found to be acceptable for use by the volunteers. In conclusion, we developed a novel strategy for the potential prevention and treatment of dermatophytosis.

14.
Mol Pharm ; 18(7): 2714-2723, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34124907

RESUMO

Prediction of skin absorption and local bioavailability from topical formulations remains a difficult task. An important challenge in forecasting topical bioavailability is the limited information available about local and systemic drug concentrations post application of topical drug products. Commercially available transdermal patches, such as Scopoderm (Novartis Consumer Health UK), offer an opportunity to test these experimental approaches as systemic pharmacokinetic data are available with which to validate a predictive model. The long-term research aim, therefore, is to develop a physiologically based pharmacokinetic model (PBPK) to predict the dermal absorption and disposition of actives included in complex dermatological products. This work explored whether in vitro release and skin permeation tests (IVRT and IVPT, respectively), and in vitro and in vivo stratum corneum (SC) and viable tissue (VT) sampling data, can provide a satisfactory description of drug "input rate" into the skin and subsequently into the systemic circulation. In vitro release and skin permeation results for scopolamine were consistent with the previously reported performance of the commercial patch investigated. New skin sampling data on the dermatopharmacokinetics (DPK) of scopolamine also accurately reflected the rapid delivery of a "priming" dose from the patch adhesive, superimposed on a slower, rate-controlled input from the drug reservoir. The scopolamine concentration versus time profiles in SC and VT skin compartments, in vitro and in vivo, taken together with IVRT release and IVPT penetration kinetics, reflect the input rate and drug delivery specifications of the Scopoderm transdermal patch and reveal the importance of skin binding with respect to local drug disposition. Further data analysis and skin PK modeling are indicated to further refine and develop the approach outlined.


Assuntos
Sistemas de Liberação de Medicamentos , Modelos Teóricos , Escopolamina/farmacocinética , Absorção Cutânea , Pele/metabolismo , Adesivo Transdérmico/estatística & dados numéricos , Administração Cutânea , Adulto , Disponibilidade Biológica , Feminino , Humanos , Masculino , Permeabilidade , Escopolamina/administração & dosagem
15.
Drug Deliv Transl Res ; 11(2): 729-740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33164164

RESUMO

For topical drug products that target sites of action in the viable epidermal and/or upper dermal compartment of the skin, the local concentration profiles have proven difficult to quantify because drug clearance from the viable cutaneous tissue is not well characterised. Without such knowledge, of course, it is difficult-if not impossible-to predict a priori whether and over what time frame a topical formulation will permit an effective concentration of drug within the skin 'compartment' to be achieved. Here, we test the hypothesis that valuable information about drug disposition, and specifically its clearance, in this experimentally difficult-to-access compartment (at least, in vivo) can be derived from available systemic pharmacokinetic data for drugs administered via transdermal delivery systems. A multiple regression analysis was undertaken to determine the best-fit empirical correlation relating clearance from the skin to known or easily calculable drug properties. It was possible, in this way, to demonstrate a clear relationship between drug clearance from the skin and key physical chemical properties of the drug (molecular weight, log P and topological polar surface area). It was further demonstrated that values predicted by the model correlated well with those derived from in vitro skin experiments.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos , Vias de Eliminação de Fármacos , Taxa de Depuração Metabólica , Pele/metabolismo
16.
Pharmaceutics ; 12(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276598

RESUMO

This work aimed to establish whether paediatric needs in cardiovascular diseases have been met by paediatric investigation plans (PIPs) produced since the development of the European Union Paediatric Regulation in 2007. The European Medicines Agency repository was searched for patterns in the development of paediatric medicines in general. Next, positive PIPs related to cardiovascular diseases were scrutinized for outcomes and compared to specific paediatric cardiovascular needs. In total, 1866 PIPs were identified with 12% corresponding to decisions taken for cardiovascular medicines. However, despite this therapeutic area having the greatest number of overall PIPs, only 14% of established needs in paediatric cardiovascular diseases were addressed by PIPs with positive decisions. Further, 71.9% of PIPs with decisions in cardiovascular disease corresponded to full waivers, so the product would not be studied in paediatrics. Despite the progress found in overall numbers of PIPs published, cardiovascular products are still commonly used off-label in paediatrics. Particularly, there is a need to develop products to treat heart failure and hypertension, two areas with clear unmet clinical needs in paediatrics. A case study on valsartan showed that industry, regulators, health technology assessment bodies, and prescribers should work together to reduce off-label use of paediatric cardiovascular diseases (CVD).

17.
Mycopathologia ; 185(2): 233-243, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108288

RESUMO

Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.


Assuntos
Pele/microbiologia , Tinha/microbiologia , Técnicas de Cultura de Tecidos/métodos , Trichophyton/crescimento & desenvolvimento , Animais , Antifúngicos/farmacologia , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , Modelos Animais de Doenças , Epiderme/microbiologia , Epiderme/patologia , Humanos , Microscopia Eletrônica de Varredura , Pele/patologia , Esporos Fúngicos/crescimento & desenvolvimento , Suínos , Tinha/tratamento farmacológico
18.
Pharmaceutics ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396369

RESUMO

Biosimilar medicines expand the biotherapeutic market and improve patient access. This work looked into the landscape of the European and US biosimilar products, their regulatory authorization, market availability, and clinical evaluation undergone prior to the regulatory approval. European Medicines Agency (EMEA, currently EMA) and Food and Drug Administration (FDA) repositories were searched to identify all biosimilar medicines approved before December 2019. Adalimumab biosimilars, and particularly their clinical evaluations, were used as a case study. In the past 13 years, the EMA has received 65 marketing authorization applications for biosimilar medicines with 55 approved biosimilars available in the EU market. Since the first biosimilar approval in 2015, the FDA has granted 26 approvals for biosimilars with only 11 being currently on the US market. Five adalimumab biosimilars have been approved in the EU and commercialized as eight different medicines through duplicate marketing authorizations. Whilst three of these are FDA-approved, the first adalimumab biosimilar will not be marketed in the US until 2023 due to Humira's exclusivity period. The EU biosimilar market has developed faster than its US counterpart, as the latter is probably challenged by a series of patents and exclusivity periods protecting the bio-originator medicines, an issue addressed by the US's latest 'Biosimilar Action Plan'.

19.
Biosens Bioelectron ; 150: 111897, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31786018

RESUMO

Flexible wearable chemical sensors are emerging tools which target diagnosis and monitoring of medical conditions. One of the potential applications of wearable chemical sensors is therapeutic drug monitoring for drugs that have a narrow therapeutic range such as lithium. We have investigated the possibility of developing a fibre-based device for non-invasive lithium drug monitoring in interstitial fluid. A flexible cotton-based lithium sensor was coupled with a carbon fibre-based reference electrode to obtain a potentiometric device. In vitro reverse iontophoresis experiments were performed to extract Li+ from under porcine skin by applying a current density of 0.4 mA cm-2 via two electrodes. Carbon fibre-based reverse iontophoresis electrodes were fabricated and used instead of a conventional silver wire-based version and comparable results were obtained. The fibre-based Li+ sensor and reference electrodes were capable of determining the Li+ concentration in samples collected via reverse iontophoresis and the results compared well to those obtained by ion chromatography. Additionally, biocompatibility of the materials used have been tested. Promising results were obtained which confirm the possibility of monitoring lithium in interstitial fluid using a wearable sensor.


Assuntos
Antidepressivos/análise , Fibra de Algodão , Monitoramento de Medicamentos/instrumentação , Compostos de Lítio/análise , Técnicas Biossensoriais/instrumentação , Linhagem Celular , Fibra de Algodão/análise , Eletrodos , Estudos de Viabilidade , Humanos , Lítio/análise , Dispositivos Eletrônicos Vestíveis
20.
Mol Pharm ; 16(6): 2808-2816, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31070927

RESUMO

The opioids buprenorphine hydrochloride (BUP) and naltrexone hydrochloride (NTX) show promise as a combination treatment for addiction, but no means of delivering the two compounds in one medicine currently exist. In this paper, we report sufficient input rates of both these drugs from one iontophoretic transdermal drug delivery system. Experiments were performed using dermatomed pig skin mounted in glass side-bi-side cells. BUP and NTX were iontophoretically delivered together from the anode using direct constant current from Ag/AgCl electrodes. The transdermal drug fluxes and the masses of drugs in both the stratum corneum and the underlying epidermis/dermis were measured. The apparent electroosmotic flow was quantified using a neutral marker (acetaminophen). The effects of donor composition (drug concentration/molar fraction and pH), current density and profile, and the choice of receptor solution were assessed. Iontophoresis dramatically increased the flux of both drugs compared to passive control values. Target fluxes (calculated from literature clearance values and required therapeutic plasma concentrations) were greatly exceeded for NTX and were met for BUP. The latter accumulated in the skin and suppressed electroosmotic flow, inhibiting both its own flux and that of NTX. NTX, in turn, negatively influenced the flux of BUP via co-ion competition. Lowering current density by increasing the delivery area resulted in increased electroosmotic flow but did not significantly affect current-normalized drug fluxes. Delivering the drugs from both electrodes and reversing the polarity for every 2 h did not increase the flux of either compound. In summary, during iontophoresis, BUP and NTX inhibited each other's flux by two distinct mechanisms. While the more complex behavior of BUP complicates the optimization of this drug combination, iontophoresis nevertheless appears to be a feasible approach for the controlled codelivery of NTX and BUP through the skin.


Assuntos
Buprenorfina/química , Sistemas de Liberação de Medicamentos/métodos , Naltrexona/química , Acetaminofen/química , Concentração de Íons de Hidrogênio , Iontoforese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA