Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Rep ; 41(11): 111810, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516767

RESUMO

Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.


Assuntos
Células-Tronco Neurais , Proteína Supressora de Tumor p53 , Geminina/genética , Geminina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Epêndima/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco Neurais/metabolismo , Diferenciação Celular
2.
Dev Cell ; 55(2): 224-236.e6, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33038333

RESUMO

Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.


Assuntos
Corpos Basais/patologia , Diferenciação Celular/fisiologia , Centríolos/patologia , Cílios/patologia , Células Cultivadas , Centríolos/fisiologia , Cílios/fisiologia , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Microscopia/métodos
3.
Proc Natl Acad Sci U S A ; 117(15): 8315-8325, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32217737

RESUMO

Motile cilia are widespread across the animal and plant kingdoms, displaying complex collective dynamics central to their physiology. Their coordination mechanism is not generally understood, with previous work mainly focusing on algae and protists. We study here the entrainment of cilia beat in multiciliated cells from brain ventricles. The response to controlled oscillatory external flows shows that flows at a similar frequency to the actively beating cilia can entrain cilia oscillations. We find that the hydrodynamic forces required for this entrainment strongly depend on the number of cilia per cell. Cells with few cilia (up to five) can be entrained at flows comparable to cilia-driven flows, in contrast with what was recently observed in Chlamydomonas Experimental trends are quantitatively described by a model that accounts for hydrodynamic screening of packed cilia and the chemomechanical energy efficiency of the flagellar beat. Simulations of a minimal model of cilia interacting hydrodynamically show the same trends observed in cilia.


Assuntos
Cílios/fisiologia , Mamíferos/fisiologia , Animais , Encéfalo/fisiologia , Chlamydomonas/química , Chlamydomonas/fisiologia , Hidrodinâmica , Modelos Biológicos
4.
Nat Commun ; 9(1): 2279, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891944

RESUMO

Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability.


Assuntos
Actinas/fisiologia , Centríolos/fisiologia , Cílios/fisiologia , Epêndima/fisiologia , Actinas/química , Animais , Fenômenos Biomecânicos , Proteínas do Citoesqueleto , Epêndima/crescimento & desenvolvimento , Epêndima/ultraestrutura , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos , Modelos Neurológicos , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo
5.
Methods Cell Biol ; 127: 19-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837384

RESUMO

Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development, monociliated ependymal progenitor cells differentiate into multiciliated ependymal cells, thus providing a simple system for studying the transition between these two stages. In this chapter, we provide protocols for immunofluorescence staining of developing ependymal cells in vivo, on whole mounts of lateral ventricle walls, and in vitro, on cultured ependymal cells. We also provide a list of markers we currently use to stain both types of cilia, including proteins at the ciliary membrane and tubulin posttranslational modifications of the axoneme.


Assuntos
Cílios/fisiologia , Epêndima/citologia , Células Ependimogliais/citologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Antígeno AC133 , Fatores de Ribosilação do ADP/fisiologia , Adenilil Ciclases/fisiologia , Animais , Antígenos CD , Biomarcadores , Antígeno CD24 , Diferenciação Celular , Células Cultivadas , Epêndima/fisiologia , Epêndima/cirurgia , Glicoproteínas , Imuno-Histoquímica , Ventrículos Laterais/fisiologia , Ventrículos Laterais/cirurgia , Camundongos , Peptídeos , Cultura Primária de Células/métodos , Coloração e Rotulagem/métodos , Tubulina (Proteína)/metabolismo
6.
Med Sci (Paris) ; 30(11): 976-9, 2014 Nov.
Artigo em Francês | MEDLINE | ID: mdl-25388579

RESUMO

The primary cilium is often associated with the phases G0 and G1 of the cellular cycle in most of the cells. So, recent studies show that its formation and its resorption are closely linked to molecular actors of the cellular cycle, as for example Aurora A or PLK1 (polo-like kinase 1). Furthermore, its resorption seems to be critical for the progress of the phase S and the cellular determination, in particular in the case of neural stem cells. Finally, the primary cilium acts as a cellular antenna allowing to transmit numerous signal pathways which, in their turn, contribute to the cellular fate.


Assuntos
Ciclo Celular/fisiologia , Cílios/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mamíferos , Modelos Biológicos , Fosforilação , Proteínas Quinases/fisiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais/fisiologia , Células-Tronco/citologia
7.
Nature ; 516(7529): 104-7, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25307055

RESUMO

The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.


Assuntos
Centríolos/fisiologia , Centrossomo/fisiologia , Cílios/fisiologia , Animais , Células Cultivadas , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Cílios/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão
8.
Curr Biol ; 22(12): 1075-83, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22608510

RESUMO

BACKGROUND: Budding yeast is a unique model to dissect spindle orientation in a cell dividing asymmetrically. In yeast, this process begins with the capture of pole-derived astral microtubules (MTs) by the polarity determinant Bud6p at the cortex of the bud in G(1). Bud6p couples MT growth and shrinkage with spindle pole movement relative to the contact site. This activity resides in N-terminal sequences away from a domain linked to actin organization. Kip3p (kinesin-8), a MT depolymerase, may be implicated, but other molecular details are essentially unknown. RESULTS: We show that Bud6p and Kip3p play antagonistic roles in controlling the length of MTs contacting the bud. The stabilizing role of Bud6p required the plus-end-tracking protein Bim1p (yeast EB1). Bim1p bound Bud6p N terminus, an interaction that proved essential for cortical capture of MTs in vivo. Moreover, Bud6p influenced Kip3p dynamic distribution through its effect on MT stability during cortical contacts via Bim1p. Coupling between Kip3p-driven depolymerization and shrinkage at the cell cortex required Bud6p, Bim1p, and dynein, a minus-end-directed motor helping tether the receding plus ends to the cell cortex. Validating these findings, live imaging of the interplay between dynein and Kip3p demonstrated that both motors decorated single astral MTs with dynein persisting at the plus end in association with the site of cortical contact during shrinkage at the cell cortex. CONCLUSIONS: Astral MT shrinkage linked to Bud6p involves its direct interaction with Bim1p and the concerted action of two MT motors-Kip3p and dynein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático/fisiologia , Actinas/metabolismo , Actinas/ultraestrutura , Western Blotting , Densitometria , Dineínas/metabolismo , Eletroforese em Gel de Poliacrilamida , Quimografia , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo
9.
Proc Natl Acad Sci U S A ; 109(15): 5729-34, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451918

RESUMO

Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting ß-tubulin, suggesting Mgr function is required for tubulin stability. Instability of ß-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic ß-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Sequência Conservada , Drosophila melanogaster/citologia , Humanos , Microtúbulos/metabolismo , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Proteólise , Fuso Acromático/metabolismo
10.
Curr Biol ; 22(6): 502-9, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22365849

RESUMO

Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules. In interphase, it promotes microtubule catastrophe; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus, in both cultured cell lines and the testes, absence of Klp10A leads to longer centrioles that show incomplete 9-fold symmetry at their ends. These structures and associated pericentriolar material undergo fragmentation. We also show that in contrast to mammalian cells where depletion of CP110 leads to centriole elongation, in Drosophila cells it results in centriole length diminution that is overcome by codepletion of Klp10A to give longer centrioles than usual. We discuss how loss of centriole capping by CP110 might have different consequences for centriole length in mammalian and insect cells and also relate these findings to the functional interactions between mammalian CP110 and another kinesin-13, Kif24, that in mammalian cells regulates cilium formation.


Assuntos
Centríolos/metabolismo , Centríolos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Cinesinas/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Primers do DNA/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/deficiência , Cinesinas/genética , Masculino , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura , Testículo/metabolismo , Testículo/ultraestrutura
11.
Mol Biol Cell ; 21(15): 2685-95, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20534809

RESUMO

In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6 Delta bni1 Delta mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.


Assuntos
Actinas/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Polaridade Celular/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nocodazol/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Tiazolidinas/farmacologia
12.
J Cell Sci ; 121(Pt 22): 3803-14, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18957510

RESUMO

In S. cerevisiae, spindle orientation is linked to the inheritance of the ;old' spindle pole by the bud. A player in this asymmetric commitment, Bud6p, promotes cortical capture of astral microtubules. Additionally, Bud6p stimulates actin cable formation though the formin Bni1p. A relationship with the second formin, Bnr1p, is unclear. Another player is Kar9p, a protein that guides microtubules along actin cables organised by formins. Here, we ask whether formins mediate Bud6p-dependent microtubule capture beyond any links to Kar9p and actin. We found that both formins control Bud6p localisation. bni1 mutations advanced recruitment of Bud6p at the bud neck, ahead of spindle assembly, whereas bnr1Delta reduced Bud6p association with the bud neck. Accordingly, bni1 or bnr1 mutations redirected microtubule capture to or away from the bud neck, respectively. Furthermore, a Bni1p truncation that can form actin cables independently of Bud6p could not bypass a bud6Delta for microtubule capture. Conversely, Bud6(1-565)p, a truncation insufficient for correct actin organisation via formins, supported microtubule capture. Finally, Bud6p or Bud6(1-565)p associated with microtubules in vitro. Thus, surprisingly, Bud6p may promote microtubule capture independently of its links to actin organisation, whereas formins would contribute to the program of Bud6p-dependent microtubule-cortex interactions by controlling Bud6p localisation.


Assuntos
Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Polaridade Celular , Proteínas do Citoesqueleto/genética , Proteínas dos Microfilamentos/genética , Microtúbulos/genética , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
13.
J Cell Sci ; 118(Pt 8): 1565-75, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15784680

RESUMO

The centrosome organizes microtubules by controlling nucleation and anchoring processes. In mammalian cells, subdistal appendages of the mother centriole are major microtubule-anchoring structures of the centrosome. It is not known how newly nucleated microtubules are anchored to these appendages. We show here that ninein, a component of subdistal appendages, localizes to the centriole via its C-terminus and interacts with gamma-tubulin-containing complexes via its N-terminus. Expression of a construct encoding the ninein C-terminus displaced endogenous ninein and the gamma-tubulin ring complex (gamma-TuRC) from the centrosome, leading to microtubule nucleation and anchoring defects. By contrast, expression of a fusion consisting of the N- and C-terminal domains (lacking the central coiled-coil region) displaced endogenous ninein without perturbing gamma-TuRC localization. Accordingly, only anchoring defects were observed in this case. Therefore, expression of this fusion appeared to uncouple microtubule nucleation and anchorage activities at the centrosome. Our results suggest that ninein has a role not only in microtubule anchoring but also in promoting microtubule nucleation by docking the gamma-TuRC at the centrosome. In addition, we show that the gamma-TuRC might not be sufficient to anchor microtubules at the centrosome in the absence of ninein. We therefore propose that ninein constitutes a molecular link between microtubule-nucleation and -anchoring activities at the centrosome.


Assuntos
Centrossomo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Microtúbulos/metabolismo , Animais , Centríolos/metabolismo , Centríolos/ultraestrutura , Proteínas do Citoesqueleto , Células HeLa , Humanos , Substâncias Macromoleculares/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares , Estrutura Terciária de Proteína/fisiologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA