Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226278

RESUMO

DNA polymerase δ, which contains the catalytic subunit, Pol3, Pol31, and Pol32, contributes both to DNA replication and repair. The deletion of pol31 is lethal, and compromising the Pol3-Pol31 interaction domains confers hypersensitivity to cold, hydroxyurea (HU), and methyl methanesulfonate, phenocopying pol32Δ. We have identified alanine-substitutions in pol31 that suppress these deficiencies in pol32Δ cells. We characterize two mutants, pol31-T415A and pol31-W417A, which map to a solvent-exposed loop that mediates Pol31-Pol3 and Pol31-Rev3 interactions. The pol31-T415A substitution compromises binding to the Pol3 CysB domain, whereas Pol31-W417A improves it. Importantly, loss of Pol32, such as pol31-T415A, leads to reduced Pol3 and Pol31 protein levels, which are restored by pol31-W417A. The mutations have differential effects on recovery from acute HU, break-induced replication and trans-lesion synthesis repair pathways. Unlike trans-lesion synthesis and growth on HU, the loss of break-induced replication in pol32Δ cells is not restored by pol31-W417A, highlighting pathway-specific roles for Pol32 in fork-related repair. Intriguingly, CHIP analyses of replication forks on HU showed that pol32Δ and pol31-T415A indirectly destabilize DNA pol α and pol ε at stalled forks.


Assuntos
DNA Polimerase III/química , DNA Polimerase III/metabolismo , Reparo do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades Proteicas , Sítios de Ligação , Replicação do DNA , Complexos Multiproteicos , Ligação Proteica , Leveduras/genética , Leveduras/metabolismo
2.
Cell Rep ; 24(10): 2614-2628.e4, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184497

RESUMO

Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Telômero/metabolismo , Translocação Genética/fisiologia , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Translocação Genética/genética
3.
Nat Commun ; 8: 13943, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045046

RESUMO

The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.


Assuntos
Ciclina E/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/química , Proteínas Ligases SKP Culina F-Box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Clonagem Molecular , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Fosfopeptídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Termodinâmica
4.
Genes Dev ; 30(8): 931-45, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056668

RESUMO

High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6-Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining.


Assuntos
Quebras de DNA de Cadeia Dupla , Poro Nuclear/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilação , Mutação , Membrana Nuclear/metabolismo , Ligação Proteica , Fase S/fisiologia , Saccharomyces cerevisiae/citologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Genetics ; 200(1): 185-205, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25786853

RESUMO

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.


Assuntos
Dano ao DNA , Histona Desacetilases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histona Desacetilases/genética , Metilação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 289(19): 13186-96, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648511

RESUMO

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas F-Box/metabolismo , Genoma Fúngico/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Acetilação , Proteínas de Ciclo Celular/genética , Estabilidade Enzimática/fisiologia , Proteínas F-Box/genética , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
7.
Structure ; 19(2): 221-31, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21256037

RESUMO

Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27, and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ∼12 Å diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3-H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones before deposition.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , Expressão Gênica , Instabilidade Genômica , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/genética , Humanos , Lisina/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA