RESUMO
CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.
Assuntos
Quadruplex G , Animais , Camundongos , Estruturas R-Loop , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Genômica , Sítios de LigaçãoRESUMO
Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.
Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Humanos , CamundongosRESUMO
Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/- Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B-haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome.
Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Homeobox Nanog/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Células HEK293 , Humanos , Mutação/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genéticaRESUMO
Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.
Assuntos
Macrófagos , Monócitos , Diferenciação Celular/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células-Tronco Hematopoéticas , Humanos , Macrófagos/metabolismo , Monócitos/metabolismoRESUMO
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal variant within this gene. We carried out oligo pull-down combined with mass spectrophotometry (MS) to elucidate the specific transcriptional machinery across this SNP using protein extracts from HCT116 cells. We observed that poly (ADP-ribose) polymerase 1 (PARP-1) is by far the most abundant binding factor. Pursuing the possibility of a feedback mechanism, we observed that PARP-1, along with the next most abundant binding proteins, DNA topoisomerase I and ATP-dependent RNA helicase A, dimerize with the TCF7L2 protein and with each other. We uncovered further evidence of a feedback mechanism using a luciferase reporter approach, including observing expression differences between alleles for rs7903146. We also found that there was an allelic difference in the MS results for proteins with less abundant binding, namely X-ray repair cross-complementing 5 and RPA/p70. Our results point to a protein complex binding across rs7903146 within TCF7L2 and suggests a possible mechanism by which this locus confers its T2D risk.
Assuntos
Alelos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Mutação , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transcrição Gênica , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína 2 Semelhante ao Fator 7 de Transcrição/química , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismoRESUMO
BACKGROUND: The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide association studies (GWAS) loci associated primarily with endocrine (in particular T2D) and cardiovascular traits. METHODS: In order to further explore if this observed phenomenon occurs in other cell lines, we carried out ChIP-seq in HepG2 cells and leveraged ENCODE data for five additional cell lines. Given that only a minority of the predicted genetic component to most complex traits has been identified to date, plus our GWAS-related observations with respect to TCF7L2 occupancy, we investigated if restricting association analyses to the genes yielded from this approach, in order to reduce the constraints of multiple testing, could reveal novel T2D loci. RESULTS: We found strong evidence for the continued enrichment of endocrine and cardiovascular GWAS categories, with additional support for cancer. When investigating all the known GWAS loci bound by TCF7L2 in the shortest gene list, derived from HCT116, the coronary artery disease-associated variant, rs46522 at the UBE2Z-GIP-ATP5G1-SNF8 locus, yielded significant association with T2D within DIAGRAM. Furthermore, when we analyzed tag-SNPs (single nucleotide polymorphisms) in genes not previously implicated by GWAS but bound by TCF7L2 within 5â kb, we observed a significant association of rs4780476 within CPPED1 in DIAGRAM. CONCLUSIONS: ChIP-seq data generated with this GWAS-implicated transcription factor provided a biologically plausible method to limit multiple testing in the assessment of genome-wide genotyping data to uncover two novel T2D-associated loci.
RESUMO
Genome-wide association studies (GWAS) have demonstrated that genetic variation at the MADS box transcription enhancer factor 2, polypeptide C (MEF2C) locus is robustly associated with bone mineral density, primarily at the femoral neck. MEF2C is a transcription factor known to operate via the Wnt signaling pathway. Our hypothesis was that MEF2C regulates the expression of a set of molecular pathways critical to skeletal function. Drawing on our laboratory and bioinformatic experience with ChIP-seq, we analyzed ChIP-seq data for MEF2C available via the ENCODE project to gain insight in to its global genomic binding pattern. We aligned the ChIP-seq data generated for GM12878 (an established lymphoblastoid cell line) and, using the analysis package HOMER, a total of 17,611 binding sites corresponding to 8,118 known genes were observed. We then performed a pathway analysis of the gene list using Ingenuity. At 5 kb, the gene list yielded 'EIF2 Signaling' as the most significant annotation, with a P value of 5.01 × 10(-26). Moving further out, this category remained the top pathway at 50 and 100 kb, then dropped to just second place at 500 kb and beyond by 'Molecular Mechanisms of Cancer'. In addition, at 50 kb and beyond 'RANK Signaling in Osteoclasts' was a consistent feature and resonates with the main general finding from GWAS of bone density. We also observed that MEF2C binding sites were significantly enriched primarily near inflammation associated genes identified from GWAS; indeed, a similar enrichment for inflammation genes has been reported previously using a similar approach for the vitamin D receptor, an established key regulator of bone turnover. Our analyses point to known connective tissue and skeletal processes but also provide novel insights in to networks involved in skeletal regulation. The fact that a specific GWAS category is enriched points to a possible role of inflammation through which it impacts bone mineral density.
Assuntos
Densidade Óssea/genética , Imunoprecipitação da Cromatina , Estudo de Associação Genômica Ampla , Algoritmos , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Genômica , Humanos , Inflamação , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismoRESUMO
ChIP-sequencing (ChIP-seq) methods directly offer whole-genome coverage, where combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing can be utilized to identify the repertoire of mammalian DNA sequences bound by transcription factors in vivo. "Next-generation" genome sequencing technologies provide 1-2 orders of magnitude increase in the amount of sequence that can be cost-effectively generated over older technologies thus allowing for ChIP-seq methods to directly provide whole-genome coverage for effective profiling of mammalian protein-DNA interactions. For successful ChIP-seq approaches, one must generate high quality ChIP DNA template to obtain the best sequencing outcomes. The description is based around experience with the protein product of the gene most strongly implicated in the pathogenesis of type 2 diabetes, namely the transcription factor transcription factor 7-like 2 (TCF7L2). This factor has also been implicated in various cancers. Outlined is how to generate high quality ChIP DNA template derived from the colorectal carcinoma cell line, HCT116, in order to build a high-resolution map through sequencing to determine the genes bound by TCF7L2, giving further insight in to its key role in the pathogenesis of complex traits.
Assuntos
Imunoprecipitação da Cromatina/métodos , Neoplasias Colorretais/química , DNA de Neoplasias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação da Cromatina/instrumentação , Neoplasias Colorretais/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Células HCT116 , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Proteína 2 Semelhante ao Fator 7 de Transcrição/química , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismoRESUMO
OBJECTIVE: Common variation at the loci harboring fat mass and obesity (FTO), melanocortin receptor 4 (MC4R), and transmembrane protein 18 (TMEM18) is consistently reported as being statistically most strongly associated with obesity. Investigations if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children were conducted. DESIGN AND METHODS: The exons of FTO, MC4R, and TMEM18 in an initial subset of our cohort were sequenced, that is, 200 obese (BMI ≥ 95 th percentile) and 200 lean AA children (BMI ≤ 5 th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. RESULTS: A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V, and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S, and I251L), and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R (Fisher's exact P = 0.0001). CONCLUSION: In summary, moderately rare missense variants within the FTO, MC4R, and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
Assuntos
População Negra/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Receptor Tipo 4 de Melanocortina/genética , Adolescente , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Criança , Pré-Escolar , Éxons , Frequência do Gene , Genótipo , Humanos , Obesidade/etnologiaRESUMO
BACKGROUND: There is evidence that one of the key type 2 diabetes (T2D) loci identified by GWAS exerts its influence early on in life through its impact on pediatric BMI. This locus on 10q23 harbors three genes, encoding hematopoietically expressed homeobox (HHEX), insulin-degrading enzyme (IDE) and kinesin family member 11 (KIF11), respectively. METHODS: We analyzed the impact of adipogeneis on the mRNA and protein expression levels of these genes in the human adipocyte Simpson-Golabi-Behmel syndrome (SGBS) cell line in order to investigate which could be the culprit gene(s) in this region of linkage disequilibrium. RESULTS: Following activation of differentiation with a PPARγ ligand, we observed ~20% decrease in IDE, ~40% decrease in HHEX and in excess of 80% decrease in KIF11 mRNA levels when comparing the adipocyte and pre-adipocyte states. We also observed decreases in KIF11 and IDE protein levels, but conversely we observed a dramatic increase in HHEX protein levels. Subsequent time course experiments revealed some marked changes in expression as early as three hours after activation of differentiation. CONCLUSION: Our data suggest that the expression of all three genes at this locus are impacted during SGBS adipogenesis and provides insights in to the possible mechanisms of how the genes at this 10q23 locus could influence both adipocyte differentiation and susceptibility to T2D through insulin resistance.
Assuntos
Índice de Massa Corporal , Cromossomos Humanos Par 10/genética , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Arritmias Cardíacas/genética , Linhagem Celular , Cromanos/farmacologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Loci Gênicos , Predisposição Genética para Doença , Gigantismo/genética , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/biossíntese , Humanos , Hipoglicemiantes/farmacologia , Resistência à Insulina/genética , Insulisina/biossíntese , Deficiência Intelectual/genética , Cinesinas/biossíntese , Desequilíbrio de Ligação/genética , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Transcrição/biossíntese , TroglitazonaRESUMO
Obesity is a serious health concern for children and adolescents, particularly in Western societies, where its incidence is now considered to have reached epidemic proportions. A number of genetic determinants of adult BMI have already been established through genome wide association studies (GWAS), most recently from the GIANT meta-analysis of such datasets combined. In this current study of European Americans, we examined the 32 loci detected in that GIANT study in the context of common childhood obesity within a cohort of 1,097 cases (defined as BMI ≥95th percentile), together with 2,760 lean controls (defined as BMI <50th percentile), aged between 2 and 18 years old. Nine of these single-nucleotide polymorphims (SNPs) yielded at least nominal evidence for association with common childhood obesity, namely at the FTO, TMEM18, NRXN3, MC4R, SEC16B, GNPDA2, TNNI3K, QPCTL, and BDNF loci. However, overall 28 of the 32 loci showed directionally consistent effects to that of the adult BMI meta-analysis. We conclude that among the 32 loci that have been reported to associate with adult BMI in the largest meta-analysis of BMI to date, at least nine also contribute to the determination of common obesity in childhood in European Americans, as demonstrated by their associations in our pediatric cohort.
Assuntos
Índice de Massa Corporal , Obesidade/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Metanálise como Assunto , PhiladelphiaRESUMO
The prevalence of obesity in children and adults in the United States has increased dramatically over the past decade. Genomic copy number variations (CNVs) have been strongly implicated in subjects with extreme obesity and coexisting developmental delay. To complement these previous studies, we addressed CNVs in common childhood obesity by examining children with a BMI in the upper 5(th) percentile but excluding any subject greater than three standard deviations from the mean in order to reduce severe cases in the cohort. We performed a whole-genome CNV survey of our cohort of 1080 defined European American (EA) childhood obesity cases and 2500 lean controls (< 50(th) percentile BMI) who were genotyped with 550,000 SNP markers. Positive findings were evaluated in an independent African American (AA) cohort of 1479 childhood obesity cases and 1575 lean controls. We identified 17 CNV loci that were unique to at least three EA cases and were both previously unreported in the public domain and validated via quantitative PCR. Eight of these loci (47.1%) also replicated exclusively in AA cases (six deletions and two duplications). Replicated deletion loci consisted of EDIL3, S1PR5, FOXP2, TBCA, ABCB5, and ZPLD1, whereas replicated duplication loci consisted of KIF2B and ARL15. We also observed evidence for a deletion at the EPHA6-UNQ6114 locus when the AA cohort was investigated as a discovery set. Although these variants may be individually rare, our results indicate that CNVs contribute to the genetic susceptibility of common childhood obesity in subjects of both European and African ancestry.
Assuntos
Variações do Número de Cópias de DNA , População Negra/genética , Criança , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Obesidade/genética , População Branca/genéticaRESUMO
BACKGROUND: Human height is considered highly heritable and correlated with certain disorders, such as type 2 diabetes and cancer. Despite environmental influences, genetic factors are known to play an important role in stature determination. A number of genetic determinants of adult height have already been established through genome wide association studies. METHODS: To examine 51 single nucleotide polymorphisms (SNPs) corresponding to the 46 previously reported genomic loci for height in 8,184 European American children with height measurements. We leveraged genotyping data from our ongoing GWA study of height variation in children in order to query the 51 SNPs in this pediatric cohort. RESULTS: Sixteen of these SNPs yielded at least nominally significant association to height, representing fifteen different loci including EFEMP1-PNPT1, GPR126, C6orf173, SPAG17, Histone class 1, HLA class III and GDF5-UQCC. Other loci revealed no evidence for association, including HMGA1 and HMGA2. For the 16 associated variants, the genotype score explained 1.64% of the total variation for height z-score. CONCLUSION: Among 46 loci that have been reported to associate with adult height to date, at least 15 also contribute to the determination of height in childhood.