Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Microsc Res Tech ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845567

RESUMO

Coccidiosis poses significant hazards to animals, particularly in terms of compromised health, reduced productivity, and economic losses in livestock farming. The conventional treatments for coccidiosis often involve synthetic drugs, contributing to concerns about drug resistance and environmental impact. The pressing need for eco-friendly alternatives is highlighted in this study, emphasizing the importance of exploring medicinal plants like Cassia alata leaf extracts (CAE) against Eimeria papillata-induced infection in mice. The CAE exhibited significant phenolic (2.17 ± 0.03 g/100 g) and flavonoid (0.14 ± 0.01 g/100 g) content and demonstrated notable antioxidant activity. In infected mice, the CAE treatment led to a substantial reduction in oocyst output (~6 fold), ameliorating necrotic enteritis and inflammatory changes in the jejunum. Additionally, CAE treatment increased goblet cell numbers (9.3 ± 0.1 / villus) and decreased macrophage infiltration in the intestinal villi. Molecular analyses revealed CAE's positive modulation of MUC2 gene and notably reduced the levels of pro-inflammatory cytokines (specifically IL-1ß, IL-10, and IFN-γ) when contrasted with the infected cohort. Furthermore, CAE treatment significantly reduced nitric oxide levels (44.03 ± 2.4 µmol/mg), showcasing its anti-inflammatory properties. The findings of this study not only contribute to the understanding of CAE's therapeutic potential but also underscore the importance of seeking eco-friendly alternatives in the face of coccidiosis challenges, addressing both the well-being of animals and the sustainability of agricultural practices. RESEARCH HIGHLIGHTS: Cassia alata extract (CAE) exhibited significant phenolic and flavonoid content, displaying notable antioxidant activity. In infected mice, CAE treatment led to a substantial reduction in oocyst output, ameliorating necrotic enteritis and inflammatory changes in the jejunum. CAE treatment increased goblet cell numbers and decreased macrophage infiltration in the intestinal villi, while molecular analyses revealed its positive modulation of the MUC2 gene and notable reduction in pro-inflammatory cytokine levels. Additionally, CAE treatment significantly reduced nitric oxide levels, showcasing its anti-inflammatory properties.

2.
Front Immunol ; 15: 1325090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348034

RESUMO

Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.


Assuntos
Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Macrófagos Alveolares/patologia , Monócitos/patologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/patologia , Inflamação/patologia , Enfisema/patologia
3.
Pflugers Arch ; 476(5): 755-767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305876

RESUMO

It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3',5'-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73-6691) on the heart and kidney. Two doses of BAY 73-6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73-6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73-6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.


Assuntos
Coração , Rim , Nefrectomia , Animais , Masculino , Ratos , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Nefrectomia/métodos
4.
iScience ; 26(5): 106686, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216114

RESUMO

Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12, and CRYAB) to construct a transcriptional "stress score" that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.

5.
J Extracell Vesicles ; 12(2): e12304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36785873

RESUMO

Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Microscopia Eletrônica , Rim/metabolismo
6.
Am J Physiol Cell Physiol ; 324(4): C951-C962, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779666

RESUMO

The mechanisms of nephroprotection in nondiabetic chronic kidney disease (CKD) models by sodium-glucose cotransporter 2 (SGLT2) inhibitors are not well defined. Five groups were established: sham-operated rats, placebo-treated rats with 5/6 nephrectomy (5/6Nx), 5/6Nx + telmisartan (5 mg/kg/day), 5/6Nx + empagliflozin (3 mg/kg/day), and 5/6Nx + empagliflozin (15 mg/kg/day). Treatment duration was 95 days. Empagliflozin showed a dose-dependent beneficial effect on the change from baseline of creatinine clearance (Ccr). The urinary albumin-to-creatinine ratio likewise improved in a dose-dependent manner. Both dosages of empagliflozin improved morphological kidney damage parameters such as renal interstitial fibrosis and glomerulosclerosis. 5/6 nephrectomy led to a substantial reduction of urinary adenosine excretion, a surrogate parameter of the tubuloglomerular feedback (TGF) mechanism. Empagliflozin caused a dose-dependent increase in urinary adenosine excretion. The urinary adenosine excretion was negatively correlated with renal interstitial fibrosis and positively correlated with Ccr. Immunofluorescence analysis revealed that empagliflozin had no effect on CD8+ and CD4+ T cells as well as on CD68+ cells (macrophages). To further explore potential mechanisms, a nonhypothesis-driven approach was used. RNA sequencing followed by quantitative real-time polymerase chain reaction revealed that complement component 1Q subcomponent A chain (C1QA) as well as complement component 1Q subcomponent C chain (C1QC) gene expression were upregulated in the placebo-treated 5/6Nx rats and this upregulation was blunted by treatment with empagliflozin. In conclusion, empagliflozin-mediated nephroprotection in nondiabetic CKD is due to a dose-dependent activation of the TGF as well as empagliflozin-mediated effects on the complement system.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Ratos , Animais , Complemento C1q , Creatinina , Retroalimentação , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Fibrose
7.
Sci Rep ; 13(1): 601, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635409

RESUMO

Linagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor used for the treatment of type 2 diabetes, with additional beneficial effects for the kidney. Treatment of mice with linagliptin revealed increased storage of cobalamin (Cbl, Vitamin B12) in organs if a standard Cbl diet (30 µg Cbl/kg chow) is given. In order to translate these findings to humans, we determined methylmalonic acid (MMA), a surrogate marker of functional Cbl homeostasis, in human plasma and urine samples (n = 1092) from baseline and end of trial (6 months after baseline) of the previously completed MARLINA-T2D clinical trial. We found that individuals with medium Cbl levels (MMA between 50 and 270 nmol/L for plasma, 0.4 and 3.5 µmol/mmol creatinine for urine, at baseline and end of trial) exhibited higher MMA values at the end of study in placebo compared with linagliptin. Linagliptin might inhibit the N-terminal degradation of the transcobalamin receptor CD320, which is necessary for uptake of Cbl into endothelial cells. Because we demonstrate that linagliptin led to increased organ levels of Cbl in mice, sustained constant medium MMA levels in humans, and inhibited CD320 processing by DPP-4 in-vitro, we speculate that linagliptin promotes intra-cellular uptake of Cbl by prolonging half-life of CD320.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Animais , Camundongos , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Vitamina B 12/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Endoteliais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/uso terapêutico , Homeostase
8.
Genome Med ; 15(1): 2, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627643

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and histopathologic glomerular lesions are among the earliest structural alterations of DN. However, the signaling pathways that initiate these glomerular alterations are incompletely understood. METHODS: To delineate the cellular and molecular basis for DN initiation, we performed single-cell and bulk RNA sequencing of renal cells from type 2 diabetes mice (BTBR ob/ob) at the early stage of DN. RESULTS: Analysis of differentially expressed genes revealed glucose-independent responses in glomerular cell types. The gene regulatory network upstream of glomerular cell programs suggested the activation of mechanosensitive transcriptional pathway MRTF-SRF predominantly taking place in mesangial cells. Importantly, activation of MRTF-SRF transcriptional pathway was also identified in DN glomeruli in independent patient cohort datasets. Furthermore, ex vivo kidney perfusion suggested that the regulation of MRTF-SRF is a common mechanism in response to glomerular hyperfiltration. CONCLUSIONS: Overall, our study presents a comprehensive single-cell transcriptomic landscape of early DN, highlighting mechanosensitive signaling pathways as novel targets of diabetic glomerulopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transcriptoma , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Transdução de Sinais
9.
Biomed Pharmacother ; 156: 113947, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411661

RESUMO

BACKGROUND: Sodium glucose cotransporter 2 (SGLT2) inhibitors originally developed for the treatment of type 2 diabetes are clinically very effective drugs halting chronic kidney disease progression. The underlying mechanisms are, however, not fully understood. METHODS: We generated single-cell transcriptomes of kidneys from rats with 5/6 nephrectomy before and after SGLT2 inhibitors treatment by single-cell RNA sequencing. FINDINGS: Empagliflozin treatment decreased BUN, creatinine and urinary albumin excretion compared to placebo by 39.8%, 34.1%, and 55%, respectively (p < 0.01 in all cases). Renal interstitial fibrosis and glomerulosclerosis was likewise decreased by 51% and 66.8%; respectively (p < 0.05 in all cases). 14 distinct kidney cell clusters could be identified by scRNA-seq. The polarization of M2 macrophages from state 1 (CD206-CD68- M2 macrophages) to state 5 (CD206+CD68+ M2 macrophages) was the main pro-fibrotic process, as CD206+CD68+ M2 macrophages highly expressed fibrosis-promoting genes and can convert into fibrocytes. Empagliflozin remarkably inhibited the expression of fibrosis-promoting (IFG1 and TREM2) and polarization-associated genes (GPNMB, LGALS3, PRDX5, and CTSB) in CD206+CD68+ M2 macrophages and attenuated inflammatory signals from CD8+ effector T cells. The inhibitory effect of empagliflozin on CD206+CD68+ M2 macrophages polarization was mainly achieved by affecting mitophagy and mTOR pathways. INTERPRETATION: We propose that the beneficial effects of empagliflozin on kidney function and morphology in 5/6 nephrectomyiced rats with established CKD are at least partially due to an inhibition of CD206+CD68+ M2 macrophage polarization by targeting mTOR and mitophagy pathways and attenuating inflammatory signals from CD8+ effector T cells. FUNDINGS: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Ratos , Animais , Ativação de Macrófagos , Diabetes Mellitus Tipo 2/patologia , Fibrose , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Nefrectomia , Serina-Treonina Quinases TOR , Glicoproteínas de Membrana
10.
Kidney Blood Press Res ; 47(9): 565-575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878596

RESUMO

INTRODUCTION: The angiotensin-converting enzyme 2 (ACE2) as well as the transmembrane protease serine type 2 (TMPRSS2) have been found to play roles in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection risk and severity of COVID-19 might be indicated by the expression of ACE2 and TMPRSS2 in the lung. METHODS: A high-salt diet rat model and renin-angiotensin-aldosterone system (RAAS) blockade were used to test whether these factors affect ACE2 and TMPRSS2 expression in the lung. A normal (0.3% NaCl), a medium (2% NaCl), or a high (8% NaCl) salt diet was fed to rats for 12 weeks, along with enalapril or telmisartan, before examining the lung for histopathological alteration. Using immunofluorescence and qRT-PCR, the localization as well as mRNA expression of ACE2 and TMPRSS2 were investigated. RESULTS: The findings provide evidence that both TMPRSS2 and ACE2 are highly expressed in bronchial epithelial cells as well as ACE2 was also expressed in alveolar type 2 cells. High-salt diet exposure in rats leads to elevated ACE2 expression on protein level. Treatment with RAAS blockers had no effect on lung tissue expression of ACE2 and TMPRSS2. CONCLUSIONS: These findings offer biological support regarding the safety of these drugs that are often prescribed to COVID-19 patients with cardiovascular comorbidity. High salt intake, on the other hand, might adversely affect COVID-19 outcome. Our preclinical data should stimulate clinical studies addressing this point of concern.


Assuntos
COVID-19 , Sistema Renina-Angiotensina , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Enalapril/farmacologia , Pulmão , RNA Mensageiro/metabolismo , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Serina Endopeptidases , Cloreto de Sódio na Dieta/efeitos adversos , Telmisartan/farmacologia
11.
Biomed Pharmacother ; 153: 113357, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792391

RESUMO

The CREDENCE trial testing canagliflozin and the EMPA-REG OUTCOME trial testing empagliflozin suggest different effects on acute kidney injury (AKI). AKI diagnosis was mainly made based on changes of serum creatinine (sCr) although this also reflect mode of action of SGLT-2 inhibitors. We analyzed both compounds in a rat AKI model. The renal ischemia-reperfusion injury (I/R) model was used. Four groups were analyzed: sham, I/R+placebo, I/R+canagliflozin (30 mg/kg/day), I/R+ empagliflozin (10 mg/kg/day). Glucose excretion was comparable in both treatment groups indicating comparable SGLT-2 inhibition. Comparing GFR surrogate markers after I/R (sCr and blood urea nitrogen (BUN)), sCr peaked 24 h after I/R, BUN after 48 h, respectively, in the placebo treated I/R group. At all investigated time points after I/R sCr and BUN was higher in the I/R + canagliflozin group as compared to placebo treated rats, whereas the empagliflozin group did not differ from the placebo group. I/R led to tubular dilatation and necrosis. Empagliflozin was able to reduce that finding whereas canagliflozin had no effect. Treatment with empagliflozin also resulted in a significant reduction in an improved inflammatory score (p = 0.006). Renal expression of kidney injury molecule-1 (KIM-1) increased after I/R and empagliflozin but not canagliflozin significantly alleviated KIM-1 expression. I/R reduced urinary miR-26a excretion. Empagliflozin but not canagliflozin was able to restore normal levels of urinary miR-26a. This study in an AKI model confirmed safety data in the EMPA-REG OUTCOME trial suggesting that empagliflozin might reduce AKI risk. The empagliflozin effects on KIM-1 and miR-26a might indicate beneficial regulation of inflammation. These data should stimulate clinical studies with AKI risk as primary endpoint.


Assuntos
Injúria Renal Aguda , Doenças Cardiovasculares , MicroRNAs , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Injúria Renal Aguda/tratamento farmacológico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Isquemia/tratamento farmacológico , MicroRNAs/uso terapêutico , Reperfusão , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
12.
BMC Nephrol ; 23(1): 117, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331159

RESUMO

BACKGROUND: Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demonstrated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibitors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2. METHODS: We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin. RESULTS: In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment conditions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normalized after treatment with telmisartan, linagliptin and empagliflozin. CONCLUSIONS: Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confirmation in ongoing interventional clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores da Dipeptidil Peptidase IV , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Rim/metabolismo , Nefrectomia , Ratos , SARS-CoV-2 , Transportador 2 de Glucose-Sódio , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214745

RESUMO

Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.

14.
Biomed Pharmacother ; 146: 112606, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968924

RESUMO

To date, the lowest protective SGLT2 inhibitor dose is unknown. We initially performed a dose-response pilot study in normal rats. Based on the results of this pilot study we compared the cardio-renal effects of the SGLT-2 inhibitor empagliflozin, with placebo or telmisartan in rats with 5/6 nephrectomy (5/6 Nx) on a high salt diet (HSD). The experimental set up was as follows: Sham operation (Sham) with normal diet and placebo; 5/6 Nx with 2% HSD and placebo; 5/6 Nx with HSD and empagliflozin (0.6 mg/kg/day, bid); 5/6 Nx with HSD and telmisartan (5 mg/kg/day, qd). Empagliflozin treatment increased urinary glucose excretion, in parallel to empagliflozin plasma levels, in a dose-dependent manner starting at doses of 1 mg/kg in the pilot study. 5/6Nx rats on HSD treated with this low empagliflozin dose showed significantly reduced cardiac (-34.85%; P < 0.05) and renal (-33.68%; P < 0.05) fibrosis in comparison to 5/6Nx rats on HSD treated with placebo. These effects were comparable to the effects observed when implementing the standard dose (5 mg/kg/day) of telmisartan (cardiac fibrosis: -36.37%; P < 0.01; renal fibrosis; -43.96%; P < 0.01). RNA-sequencing followed by confirmatory qRT-PCR revealed that both telmisartan and empagliflozin exert their cardiac effects on genes involved in vascular cell stability and cardiac iron homeostasis, whereas in the kidneys expression of genes involved in endothelial function and oxidative stress were differentially expressed. Urinary adenosine excretion, a surrogate marker of the tubuloglomerular feedback (TGF) mechanism, was not affected. In conclusion, the antifibrotic properties of low dose empagliflozin were comparable to a standard dose of telmisartan. The underlying pathways appear to be TGF independent.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Compostos Benzidrílicos/farmacologia , Fibrose/patologia , Glucosídeos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Telmisartan/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Compostos Benzidrílicos/administração & dosagem , Relação Dose-Resposta a Droga , Glucosídeos/administração & dosagem , Glicosúria , Cardiopatias/patologia , Ferro/metabolismo , Nefropatias/patologia , Masculino , Nefrectomia , Ratos , Ratos Wistar , Análise de Sequência de RNA , Sódio na Dieta , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Telmisartan/administração & dosagem
15.
Mol Cancer Ther ; 20(11): 2250-2261, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482286

RESUMO

Despite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production. This led us to identify a novel humanized antagonistic CD73 antibody, mAb19, with distinct binding properties. mAb19 potently inhibits the enzymatic activity of CD73 in vitro, resulting in an inhibition of adenosine formation and enhanced T-cell activation. We then investigated the therapeutic potential of combining CD73 antagonism with other immune modulatory and chemotherapeutic agents. Combination of mAb19 with a PD-1 inhibitor increased T-cell activation in vitro Interestingly, this effect could be further enhanced with an agonist of the adenosine receptor ADORA3. Adenosine levels were found to be elevated upon doxorubicin treatment in vivo, which could be blocked by CD73 inhibition. Combining CD73 antagonism with doxorubicin resulted in superior responses in vivo Furthermore, a retrospective analysis of rectal cancer patient samples demonstrated an upregulation of the adenosine pathway upon chemoradiation, providing further rationale for combining CD73 inhibition with chemotherapeutic agents.This study demonstrates the ability of a novel CD73 antibody to enhance T-cell function through the potent suppression of adenosine levels. In addition, the data highlight combination opportunities with standard of care therapies as well as with an ADORA3 receptor agonist to treat patients with solid tumors.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Adenosina/uso terapêutico , Terapia de Imunossupressão/métodos , Adenosina/farmacologia , Animais , Feminino , Humanos , Camundongos , Microambiente Tumoral
16.
Respir Res ; 22(1): 158, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022896

RESUMO

BACKGROUND: RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS: IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS: We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION: These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Interleucina-17/metabolismo , Interleucinas/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Células Th17/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Adulto Jovem , Interleucina 22
17.
Diabetes Obes Metab ; 23(8): 1968-1972, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33881796

RESUMO

Results of a post hoc analysis of urinary dipeptidyl peptidase-4 (DPP-4) protein as a predictor of urine albumin-to-creatinine ratio (UACR) response to linagliptin treatment based on MARLINA-T2D trial data are described. MARLINA was a 24-week, phase 3b, multinational, placebo-controlled clinical trial, in which patients with type 2 diabetes (T2D), HbA1c 6.5%-10.0% and UACR 30-3000 mg/g (n = 360) were treated with linagliptin or placebo. After 24 weeks of treatment, linagliptin significantly inhibited urinary DPP-4 activity and increased urinary DPP-4 protein. Furthermore, medium urinary DPP-4 protein levels (between 5.5 and 7.5 natural logarithmic [ln] µg/g creatinine) at baseline allowed for prediction of improved UACR in linagliptin-treated individuals. In patients with lower or higher levels of urinary DPP-4 protein at baseline, no association between linagliptin treatment and improved UACR was present. This might suggest a varying degree of importance of DPP-4 as a pathophysiological factor in T2D-associated kidney disease. In summary, urinary DPP-4 might be a useful predictive biomarker for UACR improvement by linagliptin.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Albuminas , Biomarcadores , Creatinina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Linagliptina/uso terapêutico
18.
Vaccines (Basel) ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202767

RESUMO

The role of natural killer (NK) cells in the liver as first-line post infectionem (p.i.) effectors against blood-stage malaria and their responsiveness to protective vaccination is poorly understood. Here, we investigate the effect of vaccination on NK cell-associated genes induced in the liver by blood-stage malaria of Plasmodium chabaudi. Female Balb/c mice were vaccinated at weeks 3 and 1 before being infected with 106P. chabaudi-parasitized erythrocytes. Genes preferentially expressed by NK cells were investigated in livers of vaccination-protected and non-protected mice on days 0, 1, 4, 8, and 11 p.i. using microarrays, qRT-PCR, and chromosome landscape analysis. Blood-stage malaria induces expression of specific genes in the liver at different phases of infection, i.e., Itga1 in expanding liver-resident NK (lrNK) cells, Itga2 in immigrating conventional NK (cNK) cells; Eomes and Tbx21 encoding transcription factors; Ncr1, Tnfsf10, Prf1, Gzma, Gzmb, Gzmc, Gzmm, and Gzmk encoding cytolytic effectors; natural killer gene complex (NKC)-localized genes encoding the NK cell receptors KLRG1, KLRK1, KLRAs1, 2, 5, 7, KLRD1, KLRC1, KLRC3, as well as the three receptors KLRB1A, KLRB1C, KLRB1F and their potential ligands CLEC2D and CLEC2I. Vaccination enhances this malaria-induced expression of genes, but impairs Gzmm expression, accelerates decline of Tnfsf10 and Clec2d expression, whereas it accelerates increased expression of Clec2i, taking a very similar time course as that of genes encoding plasma membrane proteins of erythroblasts, whose malaria-induced extramedullary generation in the liver is known to be accelerated by vaccination. Collectively, vaccination reshapes the response of the liver NK cell compartment to blood-stage malaria. Particularly, the malaria-induced expansion of lrNK cells peaking on day 4 p.i. is highly significantly (p < 0.0001) reduced by enhanced immigration of peripheral cNK cells, and KLRB1F:CLEC2I interactions between NK cells and erythroid cells facilitate extramedullary erythroblastosis in the liver, thus critically contributing to vaccination-induced survival of otherwise lethal blood-stage malaria of P. chabaudi.

19.
Crohns Colitis 360 ; 2(1): otaa003, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32551441

RESUMO

BACKGROUND: Short non-coding microRNAs (miRNAs) are involved in various cellular processes during disease progression of Crohn's disease (CD) and remarkably stable in feces, which make them attractive biomarker candidates for reflecting intestinal inflammatory processes. Here we investigated the potential of fecal miRNAs as noninvasive and translational CD biomarkers. METHODS: MiRNAs were screened in feces of 52 patients with CD and 15 healthy controls using RNA sequencing and the results were confirmed by PCR. The relationship between fecal miRNA levels and the clinical CD activity index (CDAI) or CD endoscopic index of severity (CDEIS) was explored, respectively. Additionally, fecal miRNAs were investigated in dextran sodium sulfate, adoptive T-cell transfer, and Helicobacter typhlonius/stress-induced murine colitis models using the NanoString platform. RESULTS: Nine miRNAs (miR-15a-5p, miR-16-5p, miR-128-3p, miR-142-5p, miR-24-3p, miR-27a-3p, miR-223-3p, miR-223-5p, and miR-3074-5p) were significantly (adj. P < 0.05, >3-fold) increased whereas 8 miRNAs (miR-10a-5p, miR-10b-5p, miR-141-3p, miR-192-5p, miR-200a-3p, miR-375, miR-378a-3p, and let-7g-5p) were significantly decreased in CD. MiR-192-5p, miR-375, and miR-141-3p correlated (P < 0.05) with both CDAI and CDEIS whereas miR-15a-5p correlated only with CDEIS. Deregulated expression of miR-223-3p, miR-16-5p, miR-15a-5p, miR-24-3p, and miR-200a-3p was also observed in murine models. The identified altered fecal miRNA levels reflect pathophysiological mechanisms in CD, such as Th1 and Th17 inflammation, autophagy, and fibrotic processes. CONCLUSIONS: Our translational study assessed global fecal miRNA changes of patients with CD and relevant preclinical models. These fecal miRNAs show promise as translational and clinically useful noninvasive biomarkers for mechanistic investigation of intestinal pathophysiology, including monitoring of disease progression.

20.
Sci Rep ; 10(1): 3373, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099009

RESUMO

Dipeptidyl peptidase 4 inhibitors and angiotensin II receptor blockers attenuate chronic kidney disease progression in experimental diabetic and non-diabetic nephropathy in a blood pressure and glucose independent manner, but the exact molecular mechanisms remain unclear. MicroRNAs (miRNAs) are short, non-coding RNA species that are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of nephropathy. miRNAs are present in urine in a remarkably stable form, packaged in extracellular vesicles. Here, we investigated linagliptin and telmisartan induced effects on renal and urinary exosomal miRNA expression in 5/6 nephrectomized rats. In the present study, renal miRNA profiling was conducted using the Nanostring nCounter technology and mRNA profiling using RNA sequencing from the following groups of rats: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus telmisartan; and 5/6 nephrectomy plus linagliptin. TaqMan Array miRNA Cards were used to evaluate which of the deregulated miRNAs in the kidney are present in urinary exosomes. In kidneys from 5/6 nephrectomized rats, the expression of 13 miRNAs was significantly increased (>1.5-fold, P < 0.05), whereas the expression of 7 miRNAs was significantly decreased (>1.5-fold, P < 0.05). Most of the deregulated miRNA species are implicated in endothelial-to-mesenchymal transition and inflammatory processes. Both telmisartan and linagliptin suppressed the induction of pro-fibrotic miRNAs, such as miR-199a-3p, and restored levels of anti-fibrotic miR-29c. In conclusion, the linagliptin and telmisartan-induced restorative effects on miR-29c expression were reflected in urinary exosomes, suggesting that miRNA profiling of urinary exosomes might be used as a biomarker for CKD progression and monitoring of treatment effects.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Exossomos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Linagliptina/farmacologia , MicroRNAs/metabolismo , Telmisartan/farmacologia , Animais , Rim/patologia , Rim/cirurgia , Nefrectomia , Análise de Componente Principal , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sistema Urinário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA