Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nano Lett ; 24(6): 1944-1950, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305174

RESUMO

Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width. Our analysis reveals that a stronger interaction (damping) occurs with 2D antimony-doped indium oxide due to its highly homogeneous surface. The results of this study offer new insight into the interaction between metal nanoparticles and 2D materials.

2.
Small ; : e2302721, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254267

RESUMO

Antimony chalcogenide, Sb2 X3 (X = S, Se), applications greatly benefit from efficient charge transport along covalently bonded (001) oriented (Sb4 X6 )n ribbons, making thin film orientation control highly desirable - although particularly hard to achieve experimentally. Here, it is shown for the first time that substrate nanostructure plays a key role in driving the growth of (001) oriented antimony chalcogenide thin films. Vapor Transport Deposition of Sb2 Se3 thin films is conducted on ZnO substrates whose morphology is tuned between highly nanostructured and flat. The extent of Sb2 Se3 (001) orientation is directly correlated to the degree of substrate nanostructure. These data showcase that nanostructuring a substrate is an effective tool to control the orientation and morphology of Sb2 Se3 films. The optimized samples demonstrate high (001) crystallographic orientation. A growth mechanism for these films is proposed, wherein the substrate physically restricts the development of undesirable crystallographic orientations. It is shown that the surface chemistry of the nanostructured substrates can be altered and still drive the growth of (001) Sb2 Se3 thin films - not limiting this phenomenon to a particular substrate type. Insights from this work are expected to guide the rational design of Sb2 X3 thin film devices and other low-dimensional crystal-structured materials wherein performance is intrinsically linked to morphology and orientation.

3.
Nanotechnology ; 34(30)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171099

RESUMO

Post transition metal chalcohalides are an emerging class of semiconductor materials for optoelectronic applications. Within this class, bismuth oxyiodide (BiOI) is of particular interest due to its high environmental stability, low toxicity, and defect tolerance considered typical of 'ns2' materials. Here we fabricate BiOI thin films using a solution-processed method that affords pin-hole free highly pure films without any residual carbon or other contaminant species. Based on these films, solution processed all-inorganic solar cells with an architecture ITO/NiOx/BiOI/ZnO/Al are fabricated for the first time. Additional device improvements are realised by templating BiOI thin film growth to attain efficiencies that rival some of the best vacuum deposited devices. The BiOI thin films and devices outlined here are an excellent platform for the further development of solution processed bismuth chalcohalide optoelectronic devices.

4.
Nano Lett ; 23(7): 2974-2980, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975136

RESUMO

Herein we report the synthesis and characterization of spinel copper gallate (CuGa2O4) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGa2O4 NCs have a band gap of ∼2.5 eV and marked p-type character, in agreement with ab initio simulations. These novel NCs are demonstrated to be photoactive, generating a clear and reproducible photocurrent under blue light irradiation when deposited as thin films. Crucially, the ability to adjust the Cu/Ga ratio within the NCs, and the effect of this on the optical and electronic properties of the NCs, was also demonstrated. These results position CuGa2O4 NCs as a novel material for optoelectronic applications, including hole transport and light harvesting.

5.
Chem Rev ; 123(1): 271-326, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563316

RESUMO

Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Coloides/química , Solventes , Semicondutores
6.
ACS Nano ; 16(4): 5476-5486, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377615

RESUMO

Indium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction. Ultrathin InN nanosheets with a thickness of ∼2 ± 0.2 nm were isolated over large areas with lateral dimensions exceeding centimeter scale. Room temperature Hall effect measurements reveal carrier mobilities of ∼216 and ∼148 cm2 V-1 s-1 for undoped and doped InN, respectively. Further analysis suggests the presence of defined quantized states in these ultrathin nitride nanosheets that can be attributed to a 2D electron gas forming due to strong out-of-plane confinement. Overall, the combination of electronic and plasmonic features in undoped and doped ultrathin 2D InN holds promise for creating advanced optoelectronic devices and functional 2D heterostructures.

7.
ACS Appl Mater Interfaces ; 14(9): 11768-11778, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213125

RESUMO

The development of high-performing p-type transparent conducting oxides will enable immense progress in the fabrication of optoelectronic devices including invisible electronics and all-oxide power electronics. While n-type transparent electrodes have already reached widespread industrial production, the lack of p-type counterparts with comparable transparency and conductivity has created a bottleneck for the development of next-generation optoelectronic devices. In this work, we present the fabrication of delafossite copper chromium oxide p-type transparent electrodes with outstanding optical and electrical properties. These layers were deposited using ultrasonic spray pyrolysis, a wet chemical method that is fast, simple, and scalable. Through careful screening of the deposition conditions, highly crystalline, dense, and smooth CuCrO2 coatings were obtained. A detailed investigation of the role played by the deposition temperature and the cation ratio enabled the properties of the prepared layers to be reliably tuned, as verified using X-ray diffraction, X-ray photoelectron spectroscopy, optical spectroscopy, Hall effect measurements, and electron and atomic force microscopies. We demonstrate record conductivities for solution-processed CuCrO2, exceeding 100 S cm-1, and we also obtained the highest value for two separate figures of merit for p-type transparent conducting oxides. These performances position solution-deposited CuCrO2 as the leading p-type transparent-conducting oxide currently available.

8.
Small ; 17(49): e2101666, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309208

RESUMO

Methods for the fabrication of thin films with well controlled structure and properties are of great importance for the development of functional devices for a large range of applications. SILAR, the acronym for Successive Ionic Layer Adsorption and Reaction, is an evolution and combination of two other deposition methods, the Atomic Layer Deposition and Chemical Bath Deposition. Due to a relative simplicity and low cost, this method has gained increasing interest in the scientific community. There are, however, several aspects related to the influence of the many parameters involved, which deserve further deepening. In this review article, the basis of the method, its application to the fabrication of thin films, the importance of experimental parameters, and some recent advances in the application of oxide films are reviewed. At first the fundamental theoretical bases and experimental concepts of SILAR are discussed. Then, the fabrication of chalcogenides and metal oxides is reviewed, with special emphasis to metal oxides, trying to extract general information on the effect of experimental parameters on structural, morphological and functional properties. Finally, recent advances in the application of oxide films prepared by SILAR are described, focusing on supercapacitors, transparent electrodes, solar cells, and photoelectrochemical devices.

9.
Nanomaterials (Basel) ; 11(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921714

RESUMO

"Wet chemical synthesis, also called solution processing, represents an accessible, versatile, and powerful approach for synthesizing materials with excellent control of their structural, chemical, and physical properties" [...].

10.
Adv Mater ; 32(50): e2002471, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33089556

RESUMO

Advance of photonics media is restrained by the lack of structuring techniques for the 3D fabrication of active materials with long-range periodicity. A methodology is reported for the engineering of tunable resonant photonic media with thickness exceeding the plasmonic near-field enhancement region by more than two orders of magnitude. The media architecture consists of a stochastically ordered distribution of plasmonic nanocrystals in a fractal scaffold of high-index semiconductors. This plasmonic-semiconductor fractal media supports the propagation of surface plasmons with drastically enhanced intensity over multiple length scales, overcoming the 2D limitations of established metasurface technologies. The fractal media are used for the fabrication of plasmonic optical gas sensors, achieving a limit of detection of 0.01 vol% at room temperature and sensitivity up to 1.9 nm vol%-1 , demonstrating almost a fivefold increase with respect to an optimized planar geometry. Beneficially to their implementation, the self-assembly mechanism of this fractal architecture allows fabrication of micrometer-thick media over surfaces of several square centimeters in a few seconds. The designable optical features and intrinsic scalability of these photonic fractal metamaterials provide ample opportunities for applications, bridging across transformation optics, sensing, and light harvesting.

11.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365771

RESUMO

Fluorine-doped tin oxide (FTO) is one of the most studied and established materials for transparent electrode applications. However, the syntheses for FTO nanocrystals are currently very limited, especially for stable and well-dispersed colloids. Here, we present the synthesis and detailed characterization of FTO nanocrystals using a colloidal heat-up reaction. High-quality SnO2 quantum dots are synthesized with a tuneable fluorine amount up to ~10% atomic, and their structural, morphological and optical properties are fully characterized. These colloids show composition-dependent optical properties, including the rise of a dopant-induced surface plasmon resonance in the near infrared.

12.
ACS Appl Bio Mater ; 3(5): 2997-3004, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025346

RESUMO

The fabrication of antimicrobial surfaces that exhibit enhanced activity toward a large variety of microbial species is one of the major challenges of our time. In fact, the negative effects associated with both bacterial and fungal infections are enormous, especially considering that many microbial species are developing resistance to known antibiotics. In this work, we show how a combination of a specific surface morphology and surface chemistry can create a surface that exhibits nearly 100% antimicrobial activity toward both Gram-negative and Gram-positive bacteria and fungal cells. Arrays of vertically aligned, oxygen-deficient zinc oxide (ZnO) nanowires grown on a substrate exhibit enhanced antimicrobial activity compared with surfaces containing either less defective nanowires or highly oxygen-deficient flat films. This synergistic effect between physical activity (morphology) and chemical activity (surface composition) has been shown to be responsible for the outstanding antimicrobial activity of our surfaces, especially toward notoriously resilient bacterial or fungal species. These findings provide a series of design rules for tuning the activities of antibacterial and antifungal nanomaterials. These rules constitute an excellent platform for the development of next-generation antimicrobial surfaces.

13.
Chem Commun (Camb) ; 55(79): 11880-11883, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528881

RESUMO

Barium stannate (BaSnO3) is one of the most promising emerging materials for use as a transparent electrode. However, to date, its synthesis has been proven to be highly irreproducible. In this communication, we present a detailed investigation of the reproducibility issues and provide a robust approach to synthesize BaSnO3 nanomaterials with controlled stoichiometry and doping.

14.
ACS Appl Mater Interfaces ; 11(32): 29255-29267, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339291

RESUMO

In this report, the gas sensing performance of zinc titanate (ZnTiO3) nanoarrays (NAs) synthesized by coating hydrothermally formed zinc oxide (ZnO) NAs with TiO2 using low-temperature chemical vapor deposition is presented. By controlling the annealing temperature, diffusion of ZnO into TiO2 forms a mixed oxide of ZnTiO3 NAs. The uniformity and the electrical properties of ZnTiO3 NAs made them ideal for light-activated acetone gas sensing applications for which such materials are not well studied. The acetone sensing performance of the ZnTiO3 NAs is tested by biasing the sensor with voltages from 0.1 to 9 V dc in an amperometric mode. An increase in the applied bias was found to increase the sensitivity of the device toward acetone under photoinduced and nonphotoinduced (dark) conditions. When illuminated with 365 nm UV light, the sensitivity was observed to increase by 3.4 times toward 12.5 ppm acetone at 350 °C with an applied bias of 9 V, as compared to dark conditions. The sensor was also observed to have significantly reduced the adsorption time, desorption time, and limit of detection (LoD) when excited by the light source. For example, LoD of the sensor in the dark and under UV light at 350 °C with a 9 V bias is found to be 80 and 10 ppb, respectively. The described approach also enabled acetone sensing at an operating temperature down to 45 °C with a repeatability of >99% and a LoD of 90 ppb when operated under light, thus indicating that the ZnTiO3 NAs are a promising material for low concentration acetone gas sensing applications.

15.
ACS Appl Mater Interfaces ; 11(18): 16674-16682, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025846

RESUMO

Here we present a robust molecular precursor-based approach to synthesize high-quality thin films of silver bismuth sulfide (AgBiS2). Pure-phase cubic AgBiS2 thin films are prepared, which are smooth and dense down to thicknesses less than 40 nm. Comprehensive structural and morphological analysis of the as-prepared films as a function of processing temperature and composition is presented, including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The optical properties of the films and their electronic band structure are also presented. The as-prepared films show impressive light absorption properties with absorption coefficients reaching 105 cm-1 for energies above ca. 950 nm. Finally, their photoactivity is demonstrated through photoconductivity measurements on lateral electrodes. The methods outlined herein enable the fabrication of AgBiS2 semiconductor thin films at low processing temperatures (150 °C) with a dense morphology and tunable Ag/Bi composition. Such films provide an excellent platform for the fabrication of AgBiS2-based optoelectronic devices, specifically solar cells.

16.
Nanoscale ; 11(7): 3154-3163, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30488064

RESUMO

Doping semiconductor nanocrystals is a powerful tool to impart new and beneficial optical and electrical properties to the host nanocrystals. Doping has been used to improve the performances of nanocrystal-based devices in applications as diverse as optics, magnetism, electronics, catalysis and sensing. In this work we present a low temperature colloidal synthesis of zinc sulfide (ZnS) nanocrystals doped with indium. Through optimization of the reaction parameters and the doping level, quantum confined (∼2 nm in size) crystalline colloids with highly tunable optical properties are achieved. Using a suite of characterization techniques including X-ray diffraction, high-resolution transmission electron microscopy, optical spectroscopies (absorption, emission, and Raman), compositional analyses and first principles simulations, we investigate the structural, morphological and optical properties of the synthesized nanocrystals. Indium dopants are found to heavily influence the band gap of ZnS. This strategy in addition to traditional methods of size control enables the synthesis of nanocrystals with finely tunable band gaps between ∼3.8 eV-4.3 eV. These doped ZnS nanocrystals are fabricated into selective UV thin-film absorbers and discriminatory proof-of-concept UVA-UVB/C photodetectors.

17.
J Am Chem Soc ; 141(1): 104-108, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30571094

RESUMO

We report the synthesis of centimeter sized ultrathin GaN and InN. The synthesis relies on the ammonolysis of liquid metal derived two-dimensional (2D) oxide sheets that were squeeze-transferred onto desired substrates. Wurtzite GaN nanosheets featured typical thicknesses of 1.3 nm, an optical bandgap of 3.5 eV and a carrier mobility of 21.5 cm2 V-1 s-1, while the InN featured a thickness of 2.0 nm. The deposited nanosheets were highly crystalline, grew along the (001) direction and featured a thickness of only three unit cells. The method provides a scalable approach for the integration of 2D morphologies of industrially important semiconductors into emerging electronics and optical devices.

18.
Nat Commun ; 9(1): 5070, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498194

RESUMO

Silicon-based impurities are ubiquitous in natural graphite. However, their role as a contaminant in exfoliated graphene and their influence on devices have been overlooked. Herein atomic resolution microscopy is used to highlight the existence of silicon-based contamination on various solution-processed graphene. We found these impurities are extremely persistent and thus utilising high purity graphite as a precursor is the only route to produce silicon-free graphene. These impurities are found to hamper the effective utilisation of graphene in whereby surface area is of paramount importance. When non-contaminated graphene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile humidity sensor made from pure graphene oxide which achieves the highest sensitivity and the lowest limit of detection ever reported. Our findings constitute a vital milestone to achieve commercially viable and high performance graphene-based devices.

19.
Nanoscale ; 10(33): 15615-15623, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30090912

RESUMO

Atomically thin, semiconducting transition and post transition metal oxides are emerging as a promising category of materials for high-performance oxide optoelectronic applications. However, the wafer-scale synthesis of crystalline atomically thin samples has been a challenge, particularly for oxides that do not present layered crystal structures. Herein we use a facile, scalable method to synthesise ultrathin bismuth oxide nanosheets using a liquid metal facilitated synthesis approach. Monolayers of α-Bi2O3 featuring sub-nanometre thickness, high crystallinity and large lateral dimensions could be isolated from the liquid bismuth surface. The nanosheets were found to be n-type semiconductors with a direct band gap of ∼3.5 eV and were suited for developing ultra violet (UV) photodetectors. The developed devices featured a high responsivity of ∼400 AW-1 when illuminated with 365 nm UV light and fast response times of ∼70 µs. The developed methods and obtained nanosheets can likely be developed further towards the synthesis of other bismuth based atomically thin chalcogenides that hold promise for electronic, optical and catalytic applications.

20.
Nanoscale ; 10(13): 6039-6050, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29543296

RESUMO

Oxygen vacancies in inorganic semiconductors play an important role in reducing electron-hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(i)-triethylamine [Cu(i)-TEA] complex at low temperature. The oxygen vacancies in these Cu2O nanoparticles led to a significant increase in the lifetimes of photogenerated charge carriers upon excitation with visible light. This, in combination with a suitable energy band structure, allowed Cu2O nanoparticles to exhibit outstanding photoactivity in visible light through the generation of electron-mediated hydroxyl (OH˙) radicals. This study highlights the significance of oxygen defects in enhancing the photocatalytic performance of promising semiconductor photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA