Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Genet Genom ; 5(4): 423-442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35342877

RESUMO

Aim: To molecularly characterize the tumor microenvironment and evaluate immunologic parameters in canine glioma patients before and after treatment with oncolytic human IL-12-expressing herpes simplex virus (M032) and in treatment naïve canine gliomas. Methods: We assessed pet dogs with sporadically occurring gliomas enrolled in Stage 1 of a veterinary clinical trial that was designed to establish the safety of intratumoral oncoviral therapy with M032, a genetically modified oncolytic herpes simplex virus. Specimens from dogs in the trial and dogs not enrolled in the trial were evaluated with immunohistochemistry, NanoString, Luminex cytokine profiling, and multi-parameter flow cytometry. Results: Treatment-naive canine glioma microenvironment had enrichment of Iba1 positive macrophages and minimal numbers of T and B cells, consistent with previous studies identifying these tumors as immunologically "cold". NanoString mRNA profiling revealed enrichment for tumor intrinsic pathways consistent with suppression of tumor-specific immunity and support of tumor progression. Oncolytic viral treatment induced an intratumoral mRNA transcription signature of tumor-specific immune responses in 83% (5/6) of canine glioma patients. Changes included mRNA signatures corresponding with interferon signaling, lymphoid and myeloid cell activation, recruitment, and T and B cell immunity. Multiplexed protein analysis identified a subset of oligodendroglioma subjects with increased concentrations of IL-2, IL-7, IL-6, IL-10, IL-15, TNFα, GM-CSF between 14 and 28 days after treatment, with evidence of CD4+ T cell activation and modulation of IL-4 and IFNγ production in CD4+ and CD8+ T cells isolated from peripheral blood. Conclusion: These findings indicate that M032 modulates the tumor-immune microenvironment in the canine glioma model.

2.
Gene Ther ; 14(14): 1111-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17495948

RESUMO

Combined treatment using adenoviral (Ad)-directed enzyme/prodrug therapy and radiation therapy has the potential to become a powerful method of cancer therapy. We have developed an Ad vector encoding a mutant bacterial cytosine deaminase (bCD) gene (AdbCD-D314A), which has a higher affinity for cytosine than wild-type bCD (bCDwt). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of AdbCD-D314A with the prodrug 5-fluorocytosine (5-FC) and ionizing radiation against human glioma. The present study demonstrates that AdbCD-D314A infection resulted in increased 5-FC-mediated cell killing, compared with AdbCDwt. Furthermore, a significant increase in cytotoxicity following AdbCD-D314A and radiation treatment of glioma cells in vitro was demonstrated as compared to AdbCDwt. Animal studies showed significant inhibition of subcutaneous or intracranial tumor growth of D54MG glioma xenografts by the combination of AdbCD-D314A/5-FC with ionizing radiation as compared with either agent alone, and with AdbCDwt/5-FC plus radiation. The results suggest that the combination of AdbCD-D314A/5-FC with radiation produces markedly increased cytotoxic effects in cancer cells in vitro and in vivo. These data indicate that combined treatment with this novel mutant enzyme/prodrug therapy and radiotherapy provides a promising approach for cancer therapy.


Assuntos
Adenoviridae/genética , Neoplasias Encefálicas/terapia , Citosina Desaminase/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glioma/terapia , Animais , Antimetabólitos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Citosina/metabolismo , Citosina Desaminase/metabolismo , Escherichia coli/enzimologia , Flucitosina/uso terapêutico , Genes Transgênicos Suicidas , Vetores Genéticos/genética , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Pró-Fármacos/uso terapêutico , Radiografia , Transplante Heterólogo
3.
Cancer Gene Ther ; 13(2): 203-14, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16082379

RESUMO

Combined treatment using adenoviral-directed enzyme/prodrug therapy and immunotherapy has the potential to become a powerful alternative method of cancer therapy. We have developed adenoviral vectors encoding the cytosine deaminase gene (Ad-CD) and cytosine deaminase:uracil phosphoribosyltransferase fusion gene (Ad-CD:UPRT). A monoclonal antibody, TRA-8, specifically binds to death receptor 5, one of two death receptors bound by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of Ad-CD:UPRT and TRA-8 against human pancreatic cancer and glioma cell lines. The present study demonstrates that Ad-CD:UPRT infection resulted in increased 5-FC-mediated cell killing, compared with Ad-CD. Furthermore, a significant increase of cytotoxicity following Ad-CD:UPRT/5-FC and TRA-8 treatment of cancer cells in vitro was demonstrated. Animal studies showed significant inhibition of tumor growth of MIA PaCa-2 pancreatic and D54MG glioma xenografts by the combination of Ad-CD:UPRT/5-FC plus TRA-8 as compared with either agent alone or no treatment. The results suggest that the combination of Ad-CD:UPRT/5-FC with TRA-8 produces an additive cytotoxic effect in cancer cells in vitro and in vivo. These data indicate that combined treatment with enzyme/prodrug therapy and TRAIL immunotherapy provides a promising approach for cancer therapy.


Assuntos
Adenoviridae/genética , Anticorpos Monoclonais/uso terapêutico , Citosina Desaminase/genética , Genes Transgênicos Suicidas/genética , Terapia Genética/métodos , Glioma/terapia , Imunoterapia/métodos , Neoplasias Pancreáticas/terapia , Análise de Variância , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Feminino , Citometria de Fluxo , Glioma/imunologia , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias Pancreáticas/imunologia , Pentosiltransferases/genética , Pró-Fármacos/uso terapêutico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/metabolismo
4.
Gene Ther ; 10(2): 105-14, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12571639

RESUMO

A model epitope-tagged receptor was constructed by fusing the hemagglutinin (HA) sequence on the extracellular N-terminus of the human somatostatin receptor subtype 2 (hSSTr2) gene. This construct was placed in an adenoviral (Ad-HAhSSTr2) vector. This study evaluated Ad-HAhSSTr2 in vitro and in vivo using FACS, fluorescent microscopy, radioactive binding assays, and gamma camera imaging techniques. Infection of A-427 non-small cell lung cancer cells with Ad-HAhSSTr2 or Ad-hSSTr2 resulted in similar expression of hSSTr2 by FACS analysis and binding assays using a (99m)Tc-labeled somatostatin analogue ((99m)Tc-P2045). HAhSSTr2 expression in A-427 cells was specific for infection with Ad-HAhSSTr2. FITC-labeled anti-HA antibody (FITC-HA) confirmed surface expression in live A-427 cells and the absence of internalization. Gamma camera imaging and gamma counter analysis of normal mice showed significantly greater (P<0.05) liver uptake of (99m)Tc-labeled anti-HA antibody ((99m)Tc-anti-HA) in mice injected i.v. 48 h earlier with Ad-HAhSSTr2 (53.6+/-6.9% ID/g) as compared to mice similarly injected with Ad-hSSTr2 (9.0+/-1.3% ID/g). In a mouse tumor model, imaging detected increased tumor localization of (99m)Tc-anti-HA due to direct intratumor injection Ad-HAhSSTr2. Gamma counter analysis confirmed significantly greater (P<0.05) uptake of (99m)Tc-anti-HA in tumors injected with Ad-HAhSSTr2 (12.5+/-4.1% ID/g) as compared to Ad-hSSTr2-infected tumors (5.1+/-1.5% ID/g). These studies demonstrate the feasibility of using an epitope-tagged reporter receptor for non-invasively imaging gene transfer.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hemaglutininas/genética , Receptores de Somatostatina/genética , Transdução Genética/métodos , Animais , Linhagem Celular , Epitopos/genética , Feminino , Citometria de Fluxo , Genes Reporter , Engenharia Genética , Vetores Genéticos/genética , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Cintilografia
5.
Clin Cancer Res ; 5(2): 383-93, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10037188

RESUMO

Adenoviral vectors, encoding genes for cell surface antigens or receptors, have been used to induce their high level expression on tumor cells in vitro and in vivo. These induced antigens and receptors can then be targeted with radiolabeled antibodies or peptides for potential radiotherapeutic applications. The purpose of this study was to determine a dosing schema of an adenoviral vector encoding the human somatostatin receptor subtype 2 (AdCMVhSSTr2) for achieving the highest tumor localization of [(111)In]-DTPA-D-Phe1-octreotide, which binds to this receptor, in a human ovarian cancer model as a prelude to future therapy studies. AdCMVhSSTr2 was produced and used to induce hSSTr2 on A427 human nonsmall cell lung cancer cells and on SKOV3.ipl human ovarian cancer cells in vitro, as demonstrated by competitive binding assays using [125I]-Tyr1-somatostatin and [(111)In]-DTPA-D-Phe1-octreotide. Mice bearing i.p. SKOV3.ip1 tumors administered 1 x 10(9) plaque-forming units of AdCMVhSSTr2 i.p. 5 days after tumor cell inoculation, followed by an i.p. injection of [(111)In]-DTPA-D-Phe1-octreotide 2 days later, showed a range of 15.3-60.4% median injected dose/gram (ID/g) in tumor at 4 h after injection compared with 3.5% ID/g when [125I]-Tyr1-somatostatin was administered and 0.3% ID/g when the negative control peptide [125I]-mIP-bombesin was administered. Mice administered a control adenoviral vector encoding the gastrin-releasing peptide receptor did not have tumor localization of [(111)In]-DTPA-D-Phe1-octreotide (<1.6% ID/g), demonstrating specificity of [(111)In]-DTPA-D-Phe1-octreotide for the AdCMVhSSTr2 induced tumor cells. In another set of experiments, the tumor localization of [(111)In]-DTPA-D-Phe1-octreotide was not different 1, 2, or 4 days after AdCMVhSSTr2 injection (31.8, 37.7, and 40.7% ID/g, respectively; P = 0.88), indicating that multiple injections of radiolabeled peptide can be administered with equivalent uptake over a 4-day period. [(111)In]-DTPA-D-Phe1-octreotide tumor localization in animals administered AdCMVhSSTr2 on consecutive days or 2 days apart was 22.4% ID/g and 53.2% ID/g, respectively (P = 0.009) when [(111)In]-DTPA-D-Phe1-octreotide was given 1 day after the second AdCMVhSSTr2 injection. There was no difference in [(111)In]-DTPA-D-Phe1-octreotide localization after a single AdCMVhSSTr2 injection (40.7% ID/g) or two injections of AdCMVhSSTr2 given 1 (45.9% ID/g) or 2 (53.2% ID/g) days apart, where [(111)In]-DTPA-D-Phe1-octreotide was given in each case 4 days after the first AdCMVhSSTr2 injection (P = 0.65). Therefore, two AdCMVhSSTr2 injections did not increase [(111)In]-DTPA-D-Phe1-octreotide tumor localization compared with one injection, which eliminates concerns about an immune response to a second dose of AdCMVhSSTr2. This will be the basis for a therapeutic protocol with multiple administrations of an octreotide analogue labeled with a therapeutic radioisotope.


Assuntos
Antineoplásicos Hormonais/metabolismo , Vetores Genéticos , Octreotida/análogos & derivados , Neoplasias Ovarianas/metabolismo , Ácido Pentético/análogos & derivados , Receptores de Somatostatina/genética , Adenoviridae/genética , Animais , Ligação Competitiva , Feminino , Humanos , Radioisótopos de Índio , Camundongos , Camundongos Nus , Transplante de Neoplasias , Octreotida/metabolismo , RNA Mensageiro/biossíntese , Receptores de Somatostatina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA