Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Assist Reprod Genet ; 40(8): 1961-1971, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204638

RESUMO

PURPOSE: To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS: (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS: After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION: These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.


Assuntos
Células do Cúmulo , Fator de Crescimento Epidérmico , Feminino , Animais , Bovinos , Células do Cúmulo/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Oócitos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Técnicas de Maturação in Vitro de Oócitos
2.
Vet Res Commun ; 47(3): 1263-1272, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36653723

RESUMO

Insulin-like growth factor-1 (IGF-1) regulates cellular lipid content, whereas pregnancy-associated plasma protein-A (PAPP-A) increases IGF-1 bioavailability. Using in vitro-matured cumulus-oocyte complexes, we aimed to evaluate the impact of PAPP-A on the blastocyst lipid content, embryo cryotolerance and embryonic transcriptional profile. We determined that PAPP-A did not affect the lipid content of oocytes, blastocysts, or blastocyst yield (P > 0.05). However, PAPP-A modulated the embryo transcriptional profiles by downregulating PPARGC1A and AKR1B1, which are related to lipid metabolism; CASP9, a pro-apoptotic gene; and IFN-τ, a marker of embryo quality (P < 0.05). Furthermore, the use of PAPP-A improved blastocyst re-expansion in the first 3 h of culture after vitrification (P < 0.05). Although PAPP-A did not affect the blastocyst lipid content or embryo production, we suggest that embryonic transcriptional modulation could contribute to maintain the balance in embryo lipid metabolism. Furthermore, PAPP-A's approach seems to control key intracellular pathways that improve post-cryopreservation development of blastocysts.


Assuntos
Fator de Crescimento Insulin-Like I , Proteína Plasmática A Associada à Gravidez , Animais , Bovinos , Proteína Plasmática A Associada à Gravidez/genética , Proteína Plasmática A Associada à Gravidez/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/metabolismo , Blastocisto/metabolismo , Fenótipo , Lipídeos , Desenvolvimento Embrionário , Fertilização in vitro/veterinária
3.
Theriogenology ; 195: 209-216, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368115

RESUMO

Oocyte in vitro maturation (IVM) is still a major challenge in human and animal assisted reproduction. Gradual instead of abrupt activation of the ovulatory cascade during IVM has been proposed to enhance nuclear-cytoplasmic synchrony and cumulus-oocyte communication, thus favoring oocyte developmental competence. Herein, we assessed the effects of neuregulin 1 (NRG1), an EGF-like factor that modulates EGFR signaling, on oocyte nuclear maturation dynamics, cumulus expansion and expression of mRNAs regulating these processes during IVM, as well as on post-IVF embryo development following AREG-stimulated IVM in cattle. In experiment 1, cumulus-oocyte complexes (COCs) were subjected to IVM with graded doses of NRG1 (1, 10 or 100 ng/mL) for 6, 9, 12, 20, and 24 h, after which oocyte nuclear status and cumulus mRNA expression were assessed. At 6 h of IVM, NRG1 at 1 ng/mL significantly decreased the percentage of GVBD (germinal vesicle breakdown) oocytes without altering later meiotic dynamics or the percentage of oocytes achieving meiosis II. In experiment 2, adding NRG1 (1 ng/mL) to the IVM medium did not affect cumulus expansion but increased the percentage of expanded and hatched blastocysts, and blastocyst total cell number following IVF/IVC. NRG1 decreased EGFR mRNA abundance while increasing NPR2 and PTX3 mRNA levels at 9 h, and TNFAIP6 mRNA abundance at 20 h of IVM. This is the first study that reports the modulatory effect of NGR1 during oocyte maturation in a mono-ovulatory species and demonstrates that this action may be applied during IVM to improve post-IVF embryo development.


Assuntos
Neuregulina-1 , Oócitos , Humanos , Animais , Bovinos , Neuregulina-1/farmacologia , RNA Mensageiro , Desenvolvimento Embrionário , Receptores ErbB , Fertilização in vitro/veterinária
4.
Hum Reprod Update ; 28(2): 232-254, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34969065

RESUMO

BACKGROUND: Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE: An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS: The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES: Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS: In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.


Assuntos
Hormônio Antimülleriano , Infertilidade , Feminino , Fertilidade , Hormônio Foliculoestimulante , Humanos , Infertilidade/metabolismo , Oócitos/metabolismo , Prognóstico
5.
Reprod Fertil Dev ; 34(2): 27-35, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231269

RESUMO

In vitro maturation (IVM) has been applied in numerous different contexts and strategies in humans and animals, but in both cases it represents a challenge still far from being overcome. Despite the large dataset produced over the last two decades on the mechanisms that govern antral follicular development and oocyte metabolism and differentiation, IVM outcomes are still unsatisfactory. This review specifically focuses on data concerning the potential consequences of using supraphysiological levels of FSH during IVM, as well as on the regulation of oocyte chromatin dynamics and its utility as a potential marker of oocyte developmental competence. Taken together, the data revisited herein indicate that a significant improvement in IVM efficacy may be provided by the integration of pre-OPU patient-specific protocols preparing the oocyte population for IVM and more physiological culture systems mimicking more precisely the follicular environment that would be experienced by the recovered oocytes until completion of metaphase II.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Meiose , Animais , Bovinos , Feminino , Fertilização in vitro , Humanos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/metabolismo , Oogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA