Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(2): 169-181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215909

RESUMO

Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções Pneumocócicas , Animais , Camundongos , Humanos , Streptococcus pneumoniae , Vacinas Pneumocócicas , Vacinas Bacterianas , Proteínas de Bactérias/genética , Infecções Pneumocócicas/prevenção & controle , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
2.
Small ; 20(15): e2307066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009518

RESUMO

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Assuntos
Lipídeo A/análogos & derivados , Vacina contra a Peste , Peste , Yersinia pestis , Camundongos , Animais , Yersinia , Peste/prevenção & controle , Antígenos de Bactérias
3.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645871

RESUMO

A newly constructed Yersinia pseudotuberculosis mutant (YptbS46) carrying the lpxE insertion and pmrF-J deletion exclusively synthesized an adjuvant form of lipid A, monophosphoryl lipid A (MPLA). Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, were designated OMV 46 -LcrV, which contained MPLA and high amounts of LcrV and displayed low activation of Toll-like receptor 4 (TLR4). Similar to the previous OMV 44 -LcrV, intramuscular prime-boost immunization with 30 µg of OMV 46 -LcrV exhibited substantially reduced reactogenicity and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV 46 -LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which were correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV 46 -LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV 46 -LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. Our studies strongly demonstrate the feasibility of OMV 46 -LcrV as a new type of plague vaccine candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA