Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605005

RESUMO

Magnetic Resonance images (MRIs) are employed in brain Stereotactic Radiosurgery and Radiotherapy (SRS/SRT) for target and/or critical organ localization and delineation. However, MRIs are inherently distorted, which also impacts the accuracy of the Magnetic Resonance Imaging/Computed Tomography (MRI/CT) co-registration process. In this phantom-based study, geometric distortion is assessed in 3T T2-weighted images (T2WIs), while the efficacy of an MRI distortion correction technique is also evaluated. A homogeneous polymer gel-filled phantom was CT-imaged before being irradiated with 26 4-mm Gamma Knife shots at predefined locations (reference control points). The irradiated phantom was MRI-scanned at 3T, implementing a T2-weighted protocol suitable for SRS/SRT treatment planning. The centers of mass of all shots were identified in the 3D image space by implementing an iterative localization algorithm and served as the evaluated control points for MRI distortion detection. MRIs and CT images were spatially co-registered using a mutual information algorithm. The inverse transformation matrix was applied to the reference control points and compared with the corresponding MRI-identified ones to evaluate the overall spatial accuracy of the MRI/CT dataset. The mean image distortion correction technique was implemented, and resulting MRI-corrected control points were compared against the corresponding reference ones. For the scanning parameters used, increased MRI distortion (>1mm) was detected at areas distant from the MRI isocenter (>5cm), while median radial distortion was 0.76mm. Detected offsets were slightly higher for the MRI/CT dataset (0.92mm median distortion). The mean image distortion correction improves geometric accuracy, but residual distortion cannot be considered negligible (0.51mm median distortion). For all three datasets studied, a statistically significant positive correlation between detected spatial offsets and their distance from the MRI isocenter was revealed. This work contributes towards the wider adoption of 3T imaging in SRS/SRT treatment planning. The presented methodology can be employed in commissioning and quality assurance programmes of corresponding treatment workflows.


Assuntos
Radiocirurgia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
2.
Med Phys ; 48(4): 1661-1672, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33230923

RESUMO

PURPOSE: This work aims at promoting target localization accuracy in cranial stereotactic radiosurgery (SRS) applications by focusing on the correction of sequence-dependent (also patient induced) magnetic resonance (MR) distortions at the lesion locations. A phantom-based quality assurance (QA) methodology was developed and implemented for the evaluation of three distortion correction techniques. The same approach was also adapted to cranial MR images used for SRS treatment planning purposes in single or multiple brain metastases cases. METHODS: A three-dimensional (3D)-printed head phantom was filled with a 3D polymer gel dosimeter. Following treatment planning and dose delivery, volumes of radiation-induced polymerization served as hypothetical lesions, offering adequate MR contrast with respect to the surrounding unirradiated areas. T1-weighted (T1w) MR imaging was performed at 1.5 T using the clinical scanning protocol for SRS. Additional images were acquired to implement three distortion correction methods; the field mapping (FM), mean image (MI) and signal integration (SI) techniques. Reference lesion locations were calculated as the averaged centroid positions of each target identified in the forward and reverse read gradient polarity MRI scans. The same techniques and workflows were implemented for the correction of contrast-enhanced T1w MR images of 10 patients with a total of 27 brain metastases. RESULTS: All methods employed in the phantom study diminished spatial distortion. Median and maximum distortion magnitude decreased from 0.7 mm (2.10 ppm) and 0.8 mm (2.36 ppm), respectively, to <0.2 mm (0.61 ppm) at all target locations, using any of the three techniques. Image quality of the corrected images was acceptable, while contrast-to-noise ratio slightly increased. Results of the patient study were in accordance with the findings of the phantom study. Residual distortion in corrected patient images was found to be <0.3 mm in the vast majority of targets. Overall, the MI approach appears to be the most efficient correction method from the three investigated. CONCLUSIONS: In cranial SRS applications, patient-specific distortion correction at the target location(s) is feasible and effective, despite the expense of longer imaging time since additional MRI scan(s) need to be performed. A phantom-based QA methodology was developed and presented to reassure efficient implementation of correction techniques for sequence-dependent spatial distortion.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
3.
Phys Med Biol ; 63(13): 135006, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29794347

RESUMO

This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM-1 (0.208 ppm mM-1). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be easily taken into account for SRS treatment planning and target definition purposes by carefully inspecting both the forward and reversed polarity series.


Assuntos
Meios de Contraste , Aumento da Imagem , Imageamento por Ressonância Magnética , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Gadolínio DTPA , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA