Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Am J Hum Genet ; 111(6): 1184-1205, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744284

RESUMO

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Assuntos
Anoctaminas , Mutação de Sentido Incorreto , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutação de Sentido Incorreto/genética , Masculino , Feminino , Epilepsia/genética , Criança , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estudos de Associação Genética , Linhagem , Cálcio/metabolismo , Genes Dominantes , Pré-Escolar , Células HEK293 , Adolescente
2.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740550

RESUMO

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Assuntos
Deficiência Intelectual , Microcefalia , Masculino , Feminino , Criança , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crescimento , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Síndrome , Índice de Massa Corporal , Estatura/genética
3.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369750

RESUMO

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Assuntos
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Deficiência Intelectual , Microcefalia , Humanos , Cromossomos Humanos Par 1 , Hipotonia Muscular , Deleção Cromossômica , Fenótipo
4.
Eur J Med Genet ; 66(2): 104689, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549465

RESUMO

Primary hypertrophic osteoarthropathy (PHO), or pachydermoperiostosis, is characterized by a clinical association including digital clubbing, periostosis and pachydermia. SLCO2A1 and HPGD genes are both responsible for PHO. The pathology is classically defined as an autosomal recessive disorder with clinical variability ranging from a mild to more severe phenotype. However, the hypothesis for an autosomal dominant form suggested for a long time was only demonstrated for the first time in 2021 for SLCO2A1. We aimed to detect a second pathogenic variant by a deep sequencing of the entire SLCO2A1 and HPGD genes, associated with functional transcription analysis in PHO patients harboring only one heterozygous variant. Among 10 PHO patients, 4 presented a single pathogenic or probably pathogenic novel variant in SLCO2A1 in heterozygous status (NM_005630.3: c.234+1G > A, c.1523_1524delCT, c.1625G > A and c.31delC), and the others carried homozygous pathogenic variants. For heterozygous forms, we found no additional pathogenic variant in HPGD or SLCO2A1. PHO can be a dominant form with age at disease onset later than that for the recessive form. This dominant form is not exceptional in young adults. In conclusion, both modes of inheritance of PHO explain the clinical variability and the difference in age at disease onset. Molecular analysis is especially required in the incomplete form to distinguish it from secondary hypertrophic osteoarthropathy.


Assuntos
Transportadores de Ânions Orgânicos , Osteoartropatia Hipertrófica Primária , Humanos , Osteoartropatia Hipertrófica Primária/genética , Osteoartropatia Hipertrófica Primária/diagnóstico , Osteoartropatia Hipertrófica Primária/patologia , Transportadores de Ânions Orgânicos/genética , Fenótipo , Heterozigoto , Linhagem
5.
Clin Genet ; 102(2): 117-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470444

RESUMO

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Assuntos
Síndrome de Cornélia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Criança , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Feminino , Genômica , Humanos , Mutação , Proteínas Nucleares/genética , Fenótipo , Gravidez , Fatores de Transcrição/genética
6.
Clin Genet ; 101(3): 307-316, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866188

RESUMO

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Deleção Cromossômica , Inversão Cromossômica , Cromossomos Humanos Par 8 , Corpo Caloso/diagnóstico por imagem , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Leucoencefalopatias/genética , Fenótipo , Trissomia
7.
Genet Med ; 23(11): 2150-2159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345024

RESUMO

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Assuntos
Deficiência Intelectual , Microcefalia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
8.
Genet Med ; 22(10): 1613-1622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565547

RESUMO

PURPOSE: Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, excessive bleeding, and often additional symptoms. Variants in ten different genes have been involved in HPS. However, some patients lack variants in these genes. We aimed to identify new genes involved in nonsyndromic or syndromic forms of albinism. METHODS: Two hundred thirty albinism patients lacking a molecular diagnosis of albinism were screened for pathogenic variants in candidate genes with known links to pigmentation or HPS pathophysiology. RESULTS: We identified two unrelated patients with distinct homozygous variants of the BLOC1S5 gene. Patients had mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. CONCLUSION: Mutation of BLOC1S5 is disease-causing, and we propose that BLOC1S5 is the gene for a new form of Hermansky-Pudlak syndrome, HPS-11.


Assuntos
Síndrome de Hermanski-Pudlak , Alelos , Animais , Plaquetas , Síndrome de Hermanski-Pudlak/genética , Humanos , Camundongos , Mutação
9.
Clin Genet ; 98(1): 43-55, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279304

RESUMO

X-linked intellectual disability (XLID) is a genetically heterogeneous condition involving more than 100 genes. To date, 35 pathogenic variants have been reported in the lysine specific demethylase 5C (KDM5C) gene. KDM5C variants are one of the major causes of moderate to severe XLID. Affected males present with short stature, distinctive facial features, behavioral disorders, epilepsy, and spasticity. For most of these variants, related female carriers have been reported, but phenotypic descriptions were poor. Here, we present clinical and molecular features of 19 females carrying 10 novel heterozygous variants affecting KDM5C function, including five probands with de novo variants. Four heterozygous females were asymptomatic. All affected individuals presented with learning disabilities or ID (mostly moderate), and four also had a language impairment mainly affecting expression. Behavioral disturbances were frequent, and endocrine disorders were more frequent in females. In conclusion, our findings provide evidence of the role of KDM5C in ID in females highlighting the increasing implication of XLID genes in females, even in sporadic affected individuals. Disease expression of XLID in females should be taken into consideration for genetic counseling.


Assuntos
Epilepsia/genética , Genes Ligados ao Cromossomo X/genética , Variação Genética/genética , Histona Desmetilases/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adulto , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Fenótipo , Adulto Jovem
10.
Hum Genet ; 139(4): 461-472, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980905

RESUMO

SKI pathogenic variations are associated with Shprintzen-Goldberg Syndrome (SGS), a rare systemic connective tissue disorder characterized by craniofacial, skeletal and cardiovascular features. So far, the clinical description, including intellectual disability, has been relatively homogeneous, and the known pathogenic variations were located in two different hotspots of the SKI gene. In the course of diagnosing Marfan syndrome and related disorders, we identified nine sporadic probands (aged 2-47 years) carrying three different likely pathogenic or pathogenic variants in the SKI gene affecting the same amino acid (Thr180). Seven of these molecular events were confirmed de novo. All probands displayed a milder morphological phenotype with a marfanoid habitus that did not initially lead to a clinical diagnosis of SGS. Only three of them had learning disorders, and none had intellectual disability. Six out of nine presented thoracic aortic aneurysm, which led to preventive surgery in the oldest case. This report extends the phenotypic spectrum of variants identified in the SKI gene. We describe a new mutational hotspot associated with a marfanoid syndrome with no intellectual disability. Cardiovascular involvement was confirmed in a significant number of cases, highlighting the importance of accurately diagnosing SGS and ensuring appropriate medical treatment and follow-up.


Assuntos
Aracnodactilia , Craniossinostoses , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome de Marfan , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Adolescente , Adulto , Aracnodactilia/diagnóstico , Aracnodactilia/genética , Aracnodactilia/metabolismo , Criança , Pré-Escolar , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Craniossinostoses/metabolismo , Feminino , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Pessoa de Meia-Idade , Patologia Molecular
12.
Prenat Diagn ; 39(11): 986-992, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.


Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos Par 15 , Diagnóstico Pré-Natal , Translocação Genética , Dissomia Uniparental , Adulto , Feminino , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Medição de Risco
13.
Eur J Hum Genet ; 27(3): 360-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552424

RESUMO

Holt-Oram syndrome (HOS) is an autosomal dominant condition characterised by the association of congenital heart defect (CHD), with or without rhythm disturbances and radial defects, due to TBX5 variants. The diagnosis is challenged by the variability of expression and the large phenotypic overlap with other conditions, like Okihiro syndrome, TAR syndrome or Fanconi disease. We retrospectively reviewed 212 patients referred for suspicion of HOS between 2002 and 2014, who underwent TBX5 screening. A TBX5 variant has been identified in 78 patients, representing the largest molecular series ever described. In the cohort, 61 met the previously described diagnostic criteria and 17 have been considered with an uncertain HOS diagnosis. A CHD was present in 91% of the patients with a TBX5 variant, atrial septal defects being the most common (61.5%). The genotype-phenotype study highlights the importance of some critical features in HOS: the septal characteristic of the CHD, the bilateral and asymmetric characteristics of the radial defect and the presence of shoulder or elbow mobility defect. Besides, 21 patients presented with an overlapping condition. Among them, 13 had a typical HOS presentation. We discuss the strategies that could be adopted to improve the molecular delineation of the remaining typical patients.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Fenótipo , Proteínas com Domínio T/genética , Deformidades Congênitas das Extremidades Superiores/genética , Anormalidades Múltiplas/patologia , Diagnóstico Diferencial , Cardiopatias Congênitas/patologia , Comunicação Interatrial/patologia , Humanos , Lactente , Deformidades Congênitas das Extremidades Inferiores/patologia , Mutação , Deformidades Congênitas das Extremidades Superiores/patologia
14.
Eur J Hum Genet ; 26(10): 1497-1501, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29899371

RESUMO

Helsmoortel-van der Aa (SWI/SNF autism-related or ADNP syndrome) is an autosomal dominant monogenic syndrome caused by de novo variants in the last exon of ADNP gene and no deletions have been documented to date. We report the first case of a 3 years and 10 months old boy exhibiting typical features of ADNP syndrome, including intellectual disability, autistic traits, facial dysmorphism, hyperlaxity, mood disorder, behavioral problems, and severe chronic constipation. 60K Agilent array-comparative genomic hybridization (CGH) identified a heterozygous interstitial microdeletion at 20q13.13 chromosome region, encompassing ADNP and DPM1. Taking into account the clinical phenotype of previously reported cases with ADNP single-point variants, genotype-phenotype correlation in the proband was established and the diagnosis of Helsmoortel-van der Aa syndrome was made. Our report thus confirms that ADNP haploinsufficiency is associated with Helsmoortel-van der Aa syndrome as well as highlights the utility of whole-genome array-CGH for detection of unbalanced submicroscopic chromosomal rearrangements in routine clinical setting in patients with unexplained intellectual disability and/or syndromic autism.


Assuntos
Transtorno Autístico/genética , Deleção Cromossômica , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Transtorno Autístico/fisiopatologia , Pré-Escolar , Cromossomos Humanos Par 20/genética , Hibridização Genômica Comparativa , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Manosiltransferases/genética , Fenótipo
15.
Mol Metab ; 13: 1-9, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784605

RESUMO

OBJECTIVE: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. METHODS: CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (ntotal = 145). RESULTS: CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CONCLUSIONS: CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations.


Assuntos
Sequenciamento do Exoma/métodos , Deficiência Intelectual/genética , Obesidade/genética , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mutação Puntual/genética
16.
Eur J Hum Genet ; 26(1): 85-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29184170

RESUMO

Syndromes caused by copy number variations are described as reciprocal when they result from deletions or duplications of the same chromosomal region. When comparing the phenotypes of these syndromes, various clinical features could be described as reversed, probably due to the opposite effect of these imbalances on the expression of genes located at this locus. The NFIX gene codes for a transcription factor implicated in neurogenesis and chondrocyte differentiation. Microdeletions and loss of function variants of NFIX are responsible for Sotos syndrome-2 (also described as Malan syndrome), a syndromic form of intellectual disability associated with overgrowth and macrocephaly. Here, we report a cohort of nine patients harboring microduplications encompassing NFIX. These patients exhibit variable intellectual disability, short stature and small head circumference, which can be described as a reversed Sotos syndrome-2 phenotype. Strikingly, such a reversed phenotype has already been described in patients harboring microduplications encompassing NSD1, the gene whose deletions and loss-of-function variants are responsible for classical Sotos syndrome. Even though the type/contre-type concept has been criticized, this model seems to give a plausible explanation for the pathogenicity of 19p13 microduplications, and the common phenotype observed in our cohort.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Cromossômica , Cromossomos Humanos Par 19/genética , Deficiência Intelectual/genética , Fatores de Transcrição NFI/genética , Anormalidades Múltiplas/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Síndrome
17.
Genet Med ; 19(9): 989-997, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28151489

RESUMO

PURPOSE: Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. METHODS: We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. RESULTS: We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10-5). We identified 40 different mutations and found strong oncogenic mutations more frequently in patients without brain overgrowth (50.6%) than in those with brain overgrowth (15.2%; P = 0.00055). Mutant allele levels were higher in skin and overgrown tissues than in blood and buccal samples (P = 3.9 × 10-25), regardless of the phenotype. CONCLUSION: Our data demonstrate the value of ultradeep NGS for molecular diagnosis of PROS, highlight its substantial allelic heterogeneity, and confirm that optimal diagnosis requires fresh skin or surgical samples from affected regions. Our findings may be of value in guiding future recommendations for genetic testing in PROS and other mosaic conditions.Genet Med advance online publication 02 February 2017.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Associação Genética , Testes Genéticos , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Mutação , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Gerenciamento Clínico , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo , Fenótipo , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Adulto Jovem
18.
Genet Mol Biol ; 39(3): 349-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561113

RESUMO

Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

19.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942287

RESUMO

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transposases/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Regulação para Baixo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Modelos Lineares , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Eur J Med Genet ; 58(3): 140-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596525

RESUMO

Proximal region of chromosome 15 long arm is rich in duplicons that, define five breakpoints (BP) for 15q rearrangements. 15q11.2 microdeletion between BP1 and BP2 has been previously associated with developmental delay and atypical psychological patterns. This region contains four highly-conserved and non-imprinted genes: NIPA1, NIPA2, CYFIP1, TUBGCP5. Our goal was to investigate the phenotypes associated with this microdeletion in a cohort of 52 patients. This copy number variation (CNV) was prevalent in 0.8% patients presenting with developmental delay, psychological pattern issues and/or multiple congenital malformations. This was studied by array-CGH at six different French Genetic laboratories. We collected data from 52 unrelated patients (including 3 foetuses) after excluding patients with an associated genetic alteration (known CNV, aneuploidy or known monogenic disease). Out of 52 patients, mild or moderate developmental delay was observed in 68.3%, 85.4% had speech impairment and 63.4% had psychological issues such as Attention Deficit and Hyperactivity Disorder, Autistic Spectrum Disorder or Obsessive-Compulsive Disorder. Seizures were noted in 18.7% patients and associated congenital heart disease in 17.3%. Parents were analysed for abnormalities in the region in 65.4% families. Amongst these families, 'de novo' microdeletions were observed in 18.8% and 81.2% were inherited from one of the parents. Incomplete penetrance and variable expressivity were observed amongst the patients. Our results support the hypothesis that 15q11.2 (BP1-BP2) microdeletion is associated with developmental delay, abnormal behaviour, generalized epilepsy and congenital heart disease. The later feature has been rarely described. Incomplete penetrance and variability of expression demands further assessment and studies.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Cardiopatias/genética , Deficiência Intelectual/genética , Transtornos Mentais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Proteínas de Transporte de Cátions , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Epilepsia/diagnóstico , Feminino , Cardiopatias/congênito , Cardiopatias/diagnóstico , Humanos , Hibridização in Situ Fluorescente , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transtornos Mentais/diagnóstico , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Distúrbios da Fala/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA