Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14791, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908170

RESUMO

The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.


Assuntos
Guanidina/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Descoberta de Drogas , Gânglios Espinais/metabolismo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.2/química , Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.8/química , Estrutura Secundária de Proteína
2.
Toxicol In Vitro ; 26(3): 485-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22230562

RESUMO

Methylmercury (MeHg) is a ubiquitous toxicant that targets the developing fetal nervous system. MeHg interacts with the Notch signaling pathway, a highly-conserved intercellular signaling mechanism required for normal development. Notch signaling is conveyed by activation of the genes in the enhancer of split (E(spl)) locus in Drosophila. We have previously shown that acute high doses of MeHg upregulate several E(spl) genes in Drosophila neural-derived C6 cells. Furthermore, MeHg induction of E(spl) can occur independent of the Notch receptor itself. We now show that MeHg, unlike inorganic mercury (HgCl2), preferentially upregulates E(spl)mδ and E(spl)mγ in Drosophila C6 cells. This is distinct from Delta ligand-induced Notch signaling in which no induction of E(spl)mδ is seen. MeHg is also seen to specifically upregulate E(spl)mδ in Drosophila embryos where HgCl2 showed no such effect. Additionally, treatment of embryos with MeHg caused a consistent failure in axonal outgrowth of the intersegmental nerve (ISN). This ISN phenotype was partially replicated by genetic activation of the Notch pathway, but was not replicated by increasing expression of E(spl)mδ. These data suggest a role for Notch signaling and the E(spl)mδ target gene in MeHg toxicity, however, the site of action for E(spl)mδ in this system remains to be elucidated.


Assuntos
Compostos de Metilmercúrio/toxicidade , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Repressoras/genética
3.
Cell Mol Life Sci ; 65(14): 2232-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18535782

RESUMO

A central mechanism in activation of the Notch signaling pathway is cleavage of the Notch receptor by ADAM metalloproteases. ADAMs also cleave Delta, the ligand for Notch, thereby downregulating Notch signals. Two ADAMs, Kuzbanian (Kuz) and TNF-alpha converting enzyme (TACE), are known to process both Delta and Notch, yet the role of these cleavages in signal propagation has remained controversial. Using an in vitro model, we show that Kuz regulates Notch signaling primarily by activating the receptor and has little overall effect on signaling via disabling Delta. We confirm that Kuz-dependent activation of Notch requires stimulation of Notch by Delta. However, over-expression of Kuz gives ligand-independent Notch activation. In contrast, TACE, which is elevated in expression in the developing Drosophila nervous system, can efficiently activate Notch in a ligand-independent manner. Altogether, these data demonstrate the potential for Kuz and TACE to participate in context- and mechanism-specific modes of Notch activation.


Assuntos
Proteínas ADAM/metabolismo , Desintegrinas/metabolismo , Proteínas de Drosophila/metabolismo , Metaloendopeptidases/metabolismo , Receptores Notch/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Desintegrinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Interferência de RNA , Receptores Notch/genética , Transdução de Sinais
4.
Scand J Immunol ; 62(3): 243-50, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16179011

RESUMO

We demonstrated that an epitope from the recombinant protective antigen (rPA) of Bacillus anthracis was presented by mature major histocompatibility complex class II (MHC-II) molecules, whereas an epitope from the recombinant virulent (rV) antigen of Yersinia pestis was presented by newly synthesized MHC-II. We addressed which endosomal compartments were involved in the antigen processing of each epitope. Bone-marrow-derived macrophages were subjected to subcellular fractionation; fractions were analysed for the expression of endosomal markers and used as a source of enzyme activity for the processing of rPA and rV antigens. The rPA epitope was productively processed by dense lysosomal fractions and light membrane fractions expressing early endosomal markers Rab5 and early endosomal antigen-1 as well as markers of antigen-presenting compartments (MHC-II, DM, DO and Ii chain). In contrast, the rV epitope was productively processed only by dense fractions with lysosomal activity. No productive antigen-processing activity was associated with fractions of intermediate density expressing Rab7 and Rab9, characteristic of late endosomes. The data suggest that endosomal compartments expressing Rab5 guanosine triphosphatase can productively process protein antigens for presentation by mature MHC class II molecules.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/imunologia , Yersinia pestis/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/análise , Linfócitos T CD4-Positivos/imunologia , Endossomos/imunologia , Epitopos de Linfócito T/análise , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA