Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(17): 5003-5006, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208019

RESUMO

Light beams carrying orbital angular momentum (OAM) in free space or within optical fibers have a wide range of applications in optics; however, exciting these modes with both high purity and low loss generally requires demanding optimization of excitation conditions in a high dimensional space. Furthermore, mechanical drift can significantly degrade the mode purity over time, which may limit practical deployment of OAM modes in concrete applications. Here, combining an iterative wavefront matching approach and a genetic algorithm, we demonstrate rapid and automated excitation of OAM modes with optimized purity and reduced loss. Our approach allows for systematic computational realignment of the system enabling drift compensation over extended durations. Our experimental results indicate that OAM purity can be optimized and maintained over periods exceeding 24 h, paving the way for the applications of stable OAM beams in optics.

2.
Neuron ; 112(10): 1694-1709.e5, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452763

RESUMO

The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.


Assuntos
Neurônios , Animais , Neurônios/fisiologia , Camundongos , Contagem de Células , Modelos Neurológicos , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Potenciais de Ação/fisiologia , Masculino , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293036

RESUMO

The brain's remarkable properties arise from collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, what would be the biological utility of such a redundant and metabolically costly encoding scheme and what is the appropriate resolution and scale of neural recording to understand brain function? Imaging the activity of one million neurons at cellular resolution and near-simultaneously across mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number. While half of the neural variance lies within sixteen behavior-related dimensions, we find this unbounded scaling of dimensionality to correspond to an ever-increasing number of internal variables without immediate behavioral correlates. The activity patterns underlying these higher dimensions are fine-grained and cortex-wide, highlighting that large-scale recording is required to uncover the full neural substrates of internal and potentially cognitive processes.

5.
Nat Methods ; 18(9): 1103-1111, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462592

RESUMO

Two-photon microscopy has enabled high-resolution imaging of neuroactivity at depth within scattering brain tissue. However, its various realizations have not overcome the tradeoffs between speed and spatiotemporal sampling that would be necessary to enable mesoscale volumetric recording of neuroactivity at cellular resolution and speed compatible with resolving calcium transients. Here, we introduce light beads microscopy (LBM), a scalable and spatiotemporally optimal acquisition approach limited only by fluorescence lifetime, where a set of axially separated and temporally distinct foci record the entire axial imaging range near-simultaneously, enabling volumetric recording at 1.41 × 108 voxels per second. Using LBM, we demonstrate mesoscopic and volumetric imaging at multiple scales in the mouse cortex, including cellular-resolution recordings within ~3 × 5 × 0.5 mm volumes containing >200,000 neurons at ~5 Hz and recordings of populations of ~1 million neurons within ~5.4 × 6 × 0.5 mm volumes at ~2 Hz, as well as higher speed (9.6 Hz) subcellular-resolution volumetric recordings. LBM provides an opportunity for discovering the neurocomputations underlying cortex-wide encoding and processing of information in the mammalian brain.


Assuntos
Córtex Cerebral/citologia , Microscopia/métodos , Animais , Cálcio/análise , Feminino , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Neurônios/citologia
6.
Cell ; 177(4): 1050-1066.e14, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982596

RESUMO

Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.


Assuntos
Microscopia/métodos , Imagem Molecular/métodos , Neuroimagem/métodos , Animais , Encéfalo/fisiologia , Cálcio/metabolismo , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Análise de Célula Única/métodos
7.
Opt Lett ; 42(13): 2531-2534, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957277

RESUMO

Dispersion control is a critical functionality required in systems involving ultra-short (∼100 fs) pulses, and we demonstrate the use of chirped long-period fiber gratings for this purpose. The operation principles of this device share many attributes with the more established fiber Bragg grating technology for dispersion compensation, but with the added benefit of record low loss (0.2 dB) and the potential of being free from group-delay ripple distortions. The bandwidth of the transmissive grating device we demonstrate exceeds 12 nm, and it provides +52 fs/nm of dispersion in the 1 µm wavelength range. This corresponds to the capability of compensating the dispersion of ∼100 fs pulses in approximately meter-long single mode fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA