Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38932694

RESUMO

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 minutes) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat-shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (KIM-1, NGAL), hypoxic- and heat shock factors (HIF-1α, HSF-1, HSP-27), pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, MCP-1), and fibrotic markers (TGF-ß, CTGF, Fibronectin) promptly after PA. Moreover, a machine learning model was identified through Random Forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic-, heat-shock-, pro-inflammatory-, and pro-fibrotic response after renal IRI compared to controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. Additionally, the parameters identified through Random Forest analysis provide a robust foundation for future biomarker research in the context of PA.

2.
Behav Brain Res ; 441: 114285, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36610549

RESUMO

The extinction of conditioned fear is frequently used in laboratories as a model for human exposure therapy and is crucial for studies of posttraumatic stress disorder (PTSD). However, the efficacy of specific protocols can vary greatly, and the underlying brain mechanisms are not sufficiently clarified. To address this issue, variable starting time (one or twenty-eight days after fear conditioning) and extinction protocols were used, and the efficacy and durability of fear extinction were also studied. Changes in the behavior, stress hormone levels and neuronal activation patterns of stressed rats were analyzed. Conditioned fear was rapidly and efficiently extinguished by all the protocols investigated. However, when these extinction protocols were initiated one day after fear training, conditioned fear relapsed spontaneously four weeks later. In contrast, when extinction trials were started 28 days after conditioning, no relapse occurred. Hormone measurements taken by the end of extinction trials indicated that adrenocorticotropin, but not corticosterone responses reflected behavioral extinction without any sign of relapse. The last extinction training increased the activation of the medial prefrontal cortex and decreased the activation of the central and medial amygdala when extinction began one day after fear conditioning. By contrast, the activation of the basolateral amygdala and the entire hippocampus decreased by the last training session when extinction started 28 days after fear conditioning. Our findings show that extinction training can extinguish remote fear memories more effectively than recent ones, and that the brain mechanisms underlying remote and recent fear memory extinction differ. Laboratory models should also focus on a later time point to increase their translational value.


Assuntos
Extinção Psicológica , Córtex Pré-Frontal , Humanos , Ratos , Masculino , Animais , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Encéfalo , Hormônios
3.
Int J Neuropsychopharmacol ; 25(8): 645-659, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35443035

RESUMO

BACKGROUND: Immunological markers and related signaling molecules in the blood are altered in schizophrenia mouse models, in acutely relapsed patients with schizophrenia, and in persons at a clinically high risk for subsequently developing psychosis, highlighting their potential as prognostic and theranostic biomarkers. Therefore, we herein aimed to identify novel potential biomarkers in the serum that are associated with purinergic signaling. METHODS: To our knowledge, this is the first study to assess the correlations among the levels of human serum adenine nucleotides (ATP, ADP), adenosine, P2X7 receptor, and disease activity in patients hospitalized due to an acute relapse of schizophrenia (n = 53) and healthy controls (n = 47). In addition, to validate these findings using a reverse translational approach, we examined the same parameters in an acute phencyclidine-induced schizophrenia mouse model. RESULTS: We found consistently elevated levels of ATP, ADP, interleukin (IL)-6, and IL-10 in both schizophrenia groups compared with the controls. The levels of adenosine, IL-1ß, IL-12, and C-reactive protein were also increased in the human patient samples. Moreover, ATP and ADP were significantly positively correlated with the Positive and Negative Symptom Scale item "lack of judgment and insight"; IL-1ß, IL-12, and tumour necrosis factor alpha were significantly positively correlated with "tension" and "depression"; and "disorientation" and "poor attention" were correlated significantly with IL-6 and IL-8. CONCLUSIONS: Our study suggests the promising potential of blood purines and inflammatory markers as future prognostic tools.


Assuntos
Esquizofrenia , Adenosina , Difosfato de Adenosina , Trifosfato de Adenosina/farmacologia , Biomarcadores , Humanos , Interleucina-12 , Interleucina-1beta , Interleucina-6 , Purinas
4.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
5.
Opt Express ; 29(18): 29366-29377, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34615047

RESUMO

The appearance of the common artifacts of laser speckle contrast imaging (LSCI), namely the granularity in flow rate estimation caused by static scatterers, is a well-known phenomenon. This artifact can be greatly reduced in spatial speckle contrast calculation using interframe decorrelated illumination, forcing true ensemble averaging. We propose a statistical model, which describes the effect of multiple image acquisitions on the contrast map quality when the illumination stable and when the illumination is decorrelated frame by frame. We investigate the improvement as a function of the ratio of dynamic and static scatterers by formulating a statistical distribution based model, using in simulation, flow phantom and in vivo experiments. Our main finding is that the ensemble averaging yields limited improvement in several practical cases due to the highly heterogeneous scatterer structure of living tissues.


Assuntos
Artefatos , Imagem de Contraste de Manchas a Laser , Iluminação , Modelos Estatísticos , Algoritmos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Folhas de Planta
6.
Opt Lett ; 46(4): 713-716, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577496

RESUMO

Laser speckle contrast imaging is a technique to determine blood flow rate with a limitation of low dynamic range. In this Letter, we introduce a varied illumination speckle contrast imaging method. It utilizes varying illumination during exposure to customize the correlation time (flow rate) to speckle contrast relation. The method can cover an order of magnitude larger range flow rate in a single exposure compared to constant illumination methods. The proposed method enables high dynamic range flow rate imaging, which is advantageous in studying larger vessels and small arteries. We demonstrate the theory by simulations and ex vivo and in vivo measurements.


Assuntos
Imagem de Contraste de Manchas a Laser/métodos , Iluminação/métodos , Artérias/diagnóstico por imagem , Humanos , Fatores de Tempo
7.
Sci Rep ; 8(1): 16590, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410116

RESUMO

Larval zebrafish (Danio rerio) has the potential to supplement rodent models due to the availability of resource-efficient, high-throughput screening and high-resolution imaging techniques. Although behavioural models are available in larvae, only a few can be employed to assess anxiety. Here we present the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of shallow water bodies in early developmental stages. The "+" shaped apparatus consists of arms of different depth, representing different levels of aversiveness similarly to the rodent elevated plus-maze. The paradigm was validated (i) in larval and juvenile zebrafish, (ii) after administration of compounds affecting anxiety and (iii) in differentially aversive experimental conditions. Furthermore, we compared the SPM with conventional "anxiety tests" of zebrafish to identify their shared characteristics. We have clarified that the preference of deeper arms is ontogenetically conserved and can be abolished by anxiolytic or enhanced by anxiogenic agents, respectively. The behavioural readout is insensitive to environmental aversiveness and is unrelated to behaviours assessed by conventional tests involving young zebrafish. Taken together, we have developed a sensitive high-throughput test allowing the assessment of anxiety-related responses of zebrafish regardless of developmental stage, granting the opportunity to combine larva-based state-of-the-art methods with detailed behavioral analysis.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Aprendizagem em Labirinto/fisiologia , Natação/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Modelos Animais de Doenças , Larva , Peixe-Zebra
8.
Front Behav Neurosci ; 12: 163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116182

RESUMO

Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.

9.
Behav Pharmacol ; 28(8): 598-609, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29099403

RESUMO

Optogenetics was the method of the year in 2010 according to Nature Neuroscience. Since then, this method has become widespread, the use of virally delivered genetic tools has extended to other fields such as pharmacogenetics, and optogenetic techniques have become frequently applied in genetically manipulated animals for in-vivo circuit analysis and behavioral studies. However, several issues should be taken into consideration when planning such experiments. We aimed to summarize the critical points concerning optogenetic manipulation of a specific brain area in mutant mice. First, the appropriate vector should be chosen to allow optimal optogenetic manipulation. Adeno-associated viral vectors are the most common carriers with different available serotypes. Light-sensitive channels are available in many forms, and the expression of the delivered genetic material can be influenced in many ways. Second, selecting the adequate stimulation protocol is also essential. The pattern, intensity, and timing could be determinative parameters. Third, the mutant strain might have a phenotype that influences the observed behavior. In conclusion, detailed preliminary experiments and numerous control groups are required to choose the best vector and stimulation protocol and to ensure that the mutant animals do not have a specific phenotype that can influence the examined behavior.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Camundongos Transgênicos , Optogenética/métodos , Animais , Encéfalo/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Optogenética/instrumentação
10.
Front Mol Neurosci ; 10: 325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075178

RESUMO

Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 µM), whereas the selective 5-HT1A agonist buspirone (0.1 µM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 µM), and AZ-10606120 (0.1 µM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission.

11.
PLoS One ; 12(7): e0181264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708877

RESUMO

The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex.


Assuntos
Encéfalo/fisiologia , Animais , Comportamento Animal , Eletrochoque , Medo/fisiologia , Halorrodopsinas/metabolismo , Imuno-Histoquímica , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Substância Cinzenta Periaquedutal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Serotonina/metabolismo , Gravação em Vídeo
12.
Anesthesiology ; 126(5): 855-867, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301408

RESUMO

BACKGROUND: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). METHODS: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. RESULTS: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. CONCLUSIONS: The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Propofol/farmacologia , Simportadores/efeitos dos fármacos , Simportadores/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Eletroporação , Feminino , Hipnóticos e Sedativos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Ratos , Ratos Wistar , Receptores de GABA/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/metabolismo , Cotransportadores de K e Cl-
13.
Physiol Behav ; 158: 100-11, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26939727

RESUMO

Vasopressin can contribute to the development of stress-related psychiatric disorders, anxiety and depression. Although these disturbances are more common in females, most of the preclinical studies have been done in males. We compared female vasopressin-deficient and +/+ Brattleboro rats. To test anxiety we used open-field, elevated plus maze (EPM), marble burying, novelty-induced hypophagia, and social avoidance tests. Object and social recognition were used to assess short term memory. To test depression-like behavior consumption of sweet solutions (sucrose and saccharin) and forced swim test (FST) were studied. The stress-hormone levels were followed by radioimmunoassay and underlying brain areas were studied by c-Fos immunohistochemistry. In the EPM the vasopressin-deficient females showed more entries towards the open arms and less stretch attend posture, drank more sweet fluids and struggled more (in FST) than the +/+ rats. The EPM-induced stress-hormone elevations were smaller in vasopressin-deficient females without basal as well as open-field and FST-induced genotype-differences. On most studied brain areas the resting c-Fos levels were higher in vasopressin-deficient rats, but the FST-induced elevations were smaller than in the +/+ ones. Similarly to males, female vasopressin-deficient animals presented diminished depression- and partly anxiety-like behavior with significant contribution of stress-hormones. In contrast to males, vasopressin deficiency in females had no effect on object and social memory, and stressor-induced c-Fos elevations were diminished only in females. Thus, vasopressin has similar effect on anxiety- and depression-like behavior in males and females, while only in females behavioral alterations are associated with reduced neuronal reactivity in several brain areas.


Assuntos
Ansiedade/genética , Encéfalo/patologia , Depressão/genética , Estresse Psicológico/genética , Estresse Psicológico/patologia , Vasopressinas/deficiência , Hormônio Adrenocorticotrópico/sangue , Animais , Ansiedade/patologia , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Feminino , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Brattleboro , Ratos Transgênicos , Reconhecimento Psicológico/fisiologia , Comportamento Social , Natação/psicologia , Vasopressinas/genética
14.
Behav Brain Res ; 300: 123-34, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26704217

RESUMO

Schizophrenia-like symptoms were detected in vasopressin-deficient (di/di) Brattleboro rats, and it was also suggested that schizophrenia might have an epigenetic component. We aimed to clarify if epigenetic changes contribute to schizophrenia-like behavior of this strain. Behavioral (locomotion by telemetry, cognition by novel object recognition, social recognition and social avoidance test, attention by pre-pulse inhibition) and epigenetic differences were compared between wild type and di/di animals. DNA methyltransferase1 (DNMT1), DNMT3a, as well as COMT, GAD, VGLUT1, 5HT2A, BDNF mRNA levels in prefrontal brain region and hippocampus were studied by qRT-PCR. Histone3 (H3) and H4 acetylation (Ac) were studied by western-blot followed by region specific examination of H3 lysine9 (K9) acetylation by immunohistochemistry. Impaired cognitive, social and attention behavior of di/di rats confirmed schizophrenia-like symptoms in our local colony. The pan-AcH3 immunoreactivity was lower in prefrontal region and elevated in the hippocampus of di/di animals. We found lower immunopositive cell number in the dorsal peduncular prefrontal cortex and the ventral lateral septum and increased AcH3K9 immunoreactivity in CA1 region of di/di animals. There were no major significant alterations in the studied mRNA levels. We confirmed that Brattleboro rat is a good preclinical model of schizophrenia. Its schizophrenia-like behavioral alteration was accompanied by changes in H3 acetylation in the prefrontal region and hippocampus. This may contribute to disturbances of many schizophrenia-related substances leading to development of schizophrenia-like symptoms. Our studies confirmed that not a single gene, rather fine changes in an array of molecules are responsible for the majority of schizophrenia cases.


Assuntos
Arginina Vasopressina/deficiência , Epigênese Genética , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Psicologia do Esquizofrênico , Acetilação , Animais , Arginina Vasopressina/genética , Modelos Animais de Doenças , Feminino , Histonas/metabolismo , Atividade Motora/fisiologia , Núcleo Accumbens/metabolismo , Inibição Pré-Pulso/fisiologia , Ratos Brattleboro , Reconhecimento Psicológico/fisiologia , Esquizofrenia/genética , Septo do Cérebro/metabolismo , Comportamento Social
15.
Nanoscale ; 7(9): 4199-210, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25673096

RESUMO

Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of "aged" NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with "identical" NPs.


Assuntos
Lipopolissacarídeos/química , Nanopartículas/química , Poliestirenos/química , Adsorção , Animais , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Tamanho da Partícula , Propriedades de Superfície
16.
Anesthesiology ; 118(3): 602-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23314165

RESUMO

BACKGROUND: Adult neurogenesis occurs in the hippocampus of most mammals, including humans, and plays an important role in hippocampal-dependent learning. This process is highly regulated by neuronal activity and might therefore be vulnerable to anesthesia. In this article, the authors investigated this possibility by evaluating the impact of propofol anesthesia on mouse hippocampal neurons generated during adulthood, at two functionally distinct maturational stages of their development. METHODS: Adult-born hippocampal neurons were identified using the cell proliferation marker bromodeoxyuridine or a retroviral vector expressing the green fluorescent protein in dividing cells and their progenies. Eleven or 17 days after the labeling procedure, animals (n = 3-5 animals per group) underwent a 6-h-long propofol anesthesia. Twenty-one days after labeling, the authors analyzed the survival, differentiation, and morphologic maturation of adult-born neurons using confocal microscopy. RESULTS: Propofol impaired the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia induced a significant decrease in the survival of neurons that were 17 days old at the time of anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly reduced the dendritic maturation of neurons generated 17 days before anesthesia, without interfering with the maturation of neurons generated 11 days before anesthesia. CONCLUSIONS: These results reveal that propofol impairs the survival and maturation of adult-born hippocampal neurons in a developmental stage-dependent manner in mice.


Assuntos
Anestesia/efeitos adversos , Senescência Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Propofol/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Exp Neurol ; 227(1): 136-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20969864

RESUMO

Freeze-lesioned regions of the forebrain cortex provide adequate environment for growth of non-differentiated neural progenitors, but do not support their neuron formation. Reduced oxygen supply, among numerous factors, was suspected to impair neuronal cell fate commitment. In the present study, proliferation and differentiation of neural stem/progenitor cells were investigated at different oxygen levels both in vitro and in vivo. Low (1% atmospheric) oxygen supply did not affect the in vitro viability and proliferation of stem cells or the transcription of "stemness" genes but impaired the viability of committed neuronal progenitors and the expression of proneural and neuronal genes. Consequently, the rate of in vitro neuron formation was markedly reduced under hypoxic conditions. In vivo, neural stem/progenitor cells survived and proliferated in freeze-lesioned adult mouse forebrains, but did not develop into neurons. Hypoperfusion-caused hypoxia in lesioned cortices was partially corrected by hyperbaric oxygen treatment (HBOT). HBOT, while reduced the rate of cell proliferation at the lesion site, resulted in sporadic neuron formation from implanted neural stem cells. The data indicate that in hypoxic brain areas, neural stem cells survive and proliferate, but neural tissue-type differentiation can not proceed. Oxygenation renders the damaged brain areas more permissive for tissue-type differentiation and may help the integration of neural stem/progenitor cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Neuroepiteliais/efeitos dos fármacos , Oxigênio/farmacologia , Células-Tronco/fisiologia , Animais , Antineoplásicos/farmacologia , Comportamento Animal , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Transplante de Células/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Oxigenoterapia Hiperbárica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/cirurgia , Locomoção/fisiologia , Masculino , Camundongos , Modelos Biológicos , Proteína Homeobox Nanog , Proteínas do Tecido Nervoso/metabolismo , Placa Neural/citologia , Oxigênio/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos , Tretinoína/farmacologia
18.
Neurosci Lett ; 462(3): 257-62, 2009 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-19545604

RESUMO

Translocator protein 18 kDa, the peripheral benzodiazepine receptor by its earlier name, is a mitochondrial membrane protein associated with the mitochondrial permeability pore. While the function of the protein is not properly understood, it is known to play roles in necrotic and apoptotic processes of the neural tissue. In the healthy adult brain, TSPO expression is restricted to glial cells. In developing or damaged neural regions, however, TSPO appears in differentiating/regenerating neurons. Using immunocytochemical, molecular biological and cell biological techniques, we demonstrate that TSPO mRNA and protein, while missing from mature neurons, are present in neural stem cells and also in postmitotic neuronal precursors. Investigating some distinct stages of in vitro differentiation of NE-4C neural stem cells, TSPO 18 kDa was found to be repressed in a relatively late phase of neuron formation, when mature neuron-specific features appear. This timing indicates that mitochondria in fully developed neurons display specific characteristics and provides an additional marker for characterising neuronal differentiation.


Assuntos
Neurônios/metabolismo , Receptores de GABA/biossíntese , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Camundongos , Placa Neural/citologia , Neurônios/citologia , RNA Mensageiro/biossíntese , Receptores de GABA/genética , Células-Tronco/citologia
19.
BMC Dev Biol ; 8: 89, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18808670

RESUMO

BACKGROUND: The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. RESULTS: In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. CONCLUSION: The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification.


Assuntos
Diferenciação Celular/fisiologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Linhagem Celular , Células Cultivadas , Células Clonais/classificação , Células Clonais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Neurônios/classificação , Fenótipo , Células-Tronco/classificação , Ativação Transcricional/fisiologia , Tretinoína/fisiologia
20.
J Cell Biochem ; 103(1): 284-95, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17541949

RESUMO

It has been shown that a human salivary gland cell line (HSG) is capable of differentiation into gland-like structures, though little is known of how morphological features are formed or controlled. Here we investigated the changes in cell proliferation and apoptosis upon terminal differentiation of HSG cells in Matrigel, an extracellular matrix derivative. Changes in the expression of survivin, a prominent anti-apoptotic factor, and caspase-3, a key apoptotic factor were also measured. In order to better understand the involvement of key signal transduction pathways in this system we pharmacologically blocked the activity of tyrosine kinase, nuclear factor kappa B(NF kappa B), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) and matrix metalloproteases (MMP). Results of these studies demonstrate that cytodifferentiation of HSG cells to an acinar phenotype is accompanied first by a decrease of cell proliferation and then by a massive programmed cell death, affected by multiple signal transduction pathways. Thus, Matrigel alone is insufficient for the full maturation and long term survival of the newly formed acini: the presence of other factors is necessary to complete the acinar differentiation of HSG cells.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Laminina/farmacologia , Proteoglicanas/farmacologia , Glândulas Salivares/citologia , Glândulas Salivares/efeitos dos fármacos , Anexinas/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , DNA/biossíntese , Combinação de Medicamentos , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Glândulas Salivares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA