Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569552

RESUMO

Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.

2.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110700

RESUMO

Short peptides containing the Arg-Gly-Asp (RGD) fragment can selectively bind to integrins on the surface of tumor cells and are attractive transport molecules for the targeted delivery of therapeutic and diagnostic agents to tumors (for example, glioblastoma). We have demonstrated the possibility of obtaining the N- and C-protected RGD peptide containing 3-amino-closo-carborane and a glutaric acid residue as a linker fragment. The resulting carboranyl derivatives of the protected RGD peptide are of interest as starting compounds in the synthesis of unprotected or selectively protected peptides, as well as building blocks for preparation of boron-containing derivatives of the RGD peptide of a more complex structure.


Assuntos
Boranos , Neoplasias , Humanos , Boranos/química , Oligopeptídeos , Peptídeos , Neoplasias/patologia
3.
Colloids Surf B Biointerfaces ; 221: 112981, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343480

RESUMO

The architecture of a nanoparticles' surface formed due to a modification with a ligand and protein corona formation in biofluids is critical for interactions with cells in vivo. Here we studied interactions of immune cells with magnetic nanoparticles (MNPs) covalently modified with polyethylene glycol (PEG) and their counterparts conjugated with peptides: a pH (low) insertion peptide (pHLIP) and cycloRGD as a targeting ligand in human serum. The conjugation of MNPs-PEG with pHLIP, but not with cycloRGD, enhanced the association of these particles with mononuclear phagocytic cells in vitro and in vivo. We did not find a clear difference in protein corona composition between the pHLIP-modified and parental PEGylated nanoparticles. Analysis of the effect of autologous human serum on MNP uptake by monocytes showed that the efficiency of endocytosis varies among healthy donors and depends on intrinsic properties of serum. Nevertheless, using classic blood, coagulation, biochemical tests, and anti-PEG IgG serum level, we failed to identify the cause of the observed interdonor variation. These individual differences should be taken into consideration during testing of nanotherapeutics.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Ligantes , Nanopartículas/química , Polietilenoglicóis/química , Peptídeos
4.
Pharmaceutics ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365090

RESUMO

A series of new composite materials based on Fe3O4 magnetic nanoparticles coated with SiO2 (or aminated SiO2) were synthesized. It has been shown that the use of N-(phosphonomethyl)iminodiacetic acid (PMIDA) to stabilize nanoparticles before silanization ensures the increased content of a SiO2 phase in the Fe3O4@SiO2 nanocomposites (NCs) in comparison with materials obtained under similar conditions, but without PMIDA. It has been demonstrated for the first time that the presence of PMIDA on the surface of NCs increases the level of Dox loading due to specific binding, while surface modification with 3-aminopropylsilane, on the contrary, significantly reduces the sorption capacity of materials. These regularities were in accordance with the results of quantum chemical calculations. It has been shown that the energies of Dox binding to the functional groups of NCs are in good agreement with the experimental data on the Dox sorption on these NCs. The mechanisms of Dox binding to the surface of NCs were proposed: simultaneous coordination of Dox on the PMIDA molecule and silanol groups at the NC surface leads to a synergistic effect in Dox binding. The synthesized NCs exhibited pH-dependent Dox release, as well as dose-dependent cytotoxicity in in vitro experiments. The cytotoxic effects of the studied materials correspond to their calculated IC50 values. NCs with a SiO2 shell obtained using PMIDA exhibited the highest effect. At the same time, the presence of PMIDA in NCs makes it possible to increase the Dox loading, as well as to reduce its desorption rate, which may be useful in the design of drug delivery vehicles with a prolonged action. We believe that the data obtained can be further used to develop stimuli-responsive materials for targeted cancer chemotherapy.

5.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012356

RESUMO

Novel nanocomposite materials based on Fe3O4 magnetic nanoparticles (MNPs) coated with silica and covalently modified by [(3-triethoxysilyl)propyl]succinic acid-polyethylene glycol (PEG 3000) conjugate, which provides a high level of doxorubicin (Dox) loading, were obtained. The efficiency of Dox desorption from the surface of nanomaterials under the action of an alternating magnetic field (AMF) in acidic and neutral media was evaluated. Their high cytotoxicity against tumor cells, as well as the drug release upon application of AMF, which leads to an increase in the cytotoxic effect, was demonstrated.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Linhagem Celular , Doxorrubicina/farmacologia , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Polietilenoglicóis , Dióxido de Silício
6.
RSC Adv ; 12(7): 4042-4046, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425460

RESUMO

Iron(ii) and iron(iii) salts of strong acids form iron glycerolates on heating at 180 °C with glycerol in the presence of an equivalent amount of alkali. Individual iron(iii) glycerolate was obtained for the first time. When Fe3O4 magnetic nanoparticles were heated with glycerol, an iron(iii) glycerolate shell was formed on their surface.

7.
ACS Appl Mater Interfaces ; 13(31): 36800-36815, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324807

RESUMO

Magnetic Fe3O4 nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO2 shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.


Assuntos
Meios de Contraste/química , Proteínas Imobilizadas/química , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagem , Peptídeos/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Meios de Contraste/toxicidade , Feminino , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/toxicidade , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos BALB C , Peptídeos/toxicidade , Dióxido de Silício/química , Dióxido de Silício/toxicidade
8.
Nanomedicine ; 32: 102317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33096245

RESUMO

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Proteínas de Membrana/farmacologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/química , Esferoides Celulares/efeitos dos fármacos
9.
Colloids Surf B Biointerfaces ; 190: 110879, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32135495

RESUMO

The efficiency of magnetic labeling with L-Lys-modified Fe3O4 magnetic nanoparticles (MNPs) and the stability of magnetization of rat adipose-derived mesenchymal stem cells, lineage-negative (Lin(-)) hematopoietic progenitor cells from mouse bone marrow and human leukemia K562 cells were studied. For this purpose, covalent modification of MNPs with 3-aminopropylsilane and N-di-Fmoc-L-lysine followed by removal of N-protecting groups was carried out. Since the degree of hydroxylation of the surface of the starting nanoparticles plays a crucial role in the silanization reaction and the possibility of obtaining stable colloidal solutions. In present work we for the first time performed a comparative qualitative and quantitative evaluation of the number of adsorbed water molecules and hydroxyl groups on the surface of chemically and physically obtained Fe3O4 MNPs using comprehensive FTIR spectroscopy and thermogravimetric analysis. The results obtained can be further used for magnetic labeling of cells in experiments in vitro and in vivo.


Assuntos
Compostos Férricos/química , Lisina/química , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Humanos , Células K562 , Fenômenos Magnéticos , Tamanho da Partícula , Ratos , Propriedades de Superfície
10.
Data Brief ; 29: 105062, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31989007

RESUMO

The method of Fe3O4 magnetic nanoparticle synthesis by co-precipitation, modification by 3-aminopropylsilane and conjugation with pH-(low)-insertion peptide (pHLIP) is reported. The characterization of nanoparticles by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, elemental and thermogravimetric analyses as well as dynamic light scattering and z-potential measurements is provided. The effect of nanoparticles on the viability of mouse and human peripheral blood mononuclear cells is tested by flow cytometry. The experimental details of nanoparticle administration to tumor-bearing mice, magnetic resonance imaging scanning as well as subsequent tumor sample collection and their processing for transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, histological and immunohistochemical analyses are described. Biodistribution of the nanoparticles in mice and blood serum analysis data for experimental animals are given. The data are useful for an experiment workflow design and for the development of theranostic systems based on magnetic nanoparticles.

11.
Nanomedicine ; 23: 102086, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449887

RESUMO

Nowadays there is growing recognition of the fact that biological systems have a greater impact on nanoparticle target delivery in tumors than nanoparticle design. Here we investigate the targeted delivery of Fe3O4 magnetic nanoparticles conjugated with pH-low-insertion peptide (MNP-pHLIP) on orthotopically induced MDA-MB-231 human breast carcinoma xenografts of varying volumes as a model of cancer progression. Using in vivo magnetic resonance imaging and subsequent determination of iron content in tumor samples by inductively coupled plasma atomic emission spectroscopy we found that MNP-pHLIP accumulation depends on tumor volume. Transmission electron microscopy, histological analysis and immunohistochemical staining of tumor samples suggest that blood vessel distribution is the key factor in determining the success of the accumulation of nanoparticles in tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Nanopartículas de Magnetita , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Langmuir ; 34(11): 3449-3458, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29478322

RESUMO

The surface modification of Fe3O4-based magnetic nanoparticles (MNPs) with N-(phosphonomethyl)iminodiacetic acid (PMIDA) was studied, and the possibility of their use as magnetic resonance imaging contrast agents was shown. The effect of the added PMIDA amount, the reaction temperature and time on the degree of immobilization of this reagent on MNPs, and the hydrodynamic characteristics of their aqueous colloidal solutions have been systematically investigated for the first time. It has been shown that the optimum condition for the modification of MNPs is the reaction at 40 °C with an equimolar amount of PMIDA for 3.5 h. The modified MNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric, and CHN elemental analyses. The dependence of the hydrodynamic characteristics of the MNP colloidal solutions on the concentration and pH of the medium was studied by the dynamic light scattering method. On the basis of the obtained data, we can assume that the PMIDA molecules are fixed on the surface of the MNPs as a monomolecular layer. The modified MNPs had good colloidal stability and high magnetic properties. The calculated relaxivities r2 and r1 were 341 and 102 mmol-1 s-1, respectively. The possibility of using colloidal solutions of PMIDA-modified MNPs as a T2 contrast agent for liver studies in vivo (at a dose of 0.6 mg kg-1) was demonstrated for the first time.


Assuntos
Meios de Contraste/farmacologia , Fígado/metabolismo , Nanopartículas de Magnetita/química , Ácido Fosfonoacéticos/análogos & derivados , Animais , Células CHO , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/toxicidade , Cricetulus , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade , Masculino , Mesocricetus , Ácido Fosfonoacéticos/química , Ácido Fosfonoacéticos/farmacologia , Ácido Fosfonoacéticos/toxicidade , Temperatura
13.
Int J Nanomedicine ; 11: 4451-4463, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660439

RESUMO

PURPOSE: Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites. MATERIALS AND METHODS: Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe3+ and Fe2+ salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic resonance properties of MNPs were investigated in vitro and in vivo. RESULTS: The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g-1) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity r2 was 271 mmol-1 s-1. To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by Opisthorchis felineus. CONCLUSION: The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage.

14.
Anal Biochem ; 509: 146-155, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318238

RESUMO

Cell co-culture systems have a long history of application in hematology and hold promise for successful hematopoietic stem and progenitor cell expansion. Here we report that various types of stromal cells used in such co-cultures can be rapidly and efficiently labeled with l-lysine-modified Fe3O4 magnetic nanoparticles. Hematopoiesis-supporting activity does not seem to be compromised after magnetic labeling of stromal cells, and the loss of the label by stromal layers during extended culturing is negligible. Magnetic labeling allows for simple and efficient removal of stromal component, yielding unbiased hematopoietic cell populations. When Lin(-) bone mouse marrow fraction was co-cultured with magnetic stromal layers and resulting cell populations were harvested by trypsinization, the yields of total nucleated cells, colony forming cells, and phenotypically primitive Lin(-)Sca-1(+)c-kit(+) subset were substantially higher as compared with nonadherent cell fractions harvested after conventional stromal co-culture. The advantage offered by the magnetic stroma approach over the traditional one was even more significant after a second round of co-culture and was more dramatic for more primitive hematopoietic cells. We conclude that magnetic stromal layers represent a simple, efficient, and convenient tool for co-culturing and subsequent recovery of sufficiently pure unbiased populations of hematopoietic cells.


Assuntos
Separação Celular/métodos , Técnicas de Cocultura/métodos , Células-Tronco Hematopoéticas/citologia , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout
15.
Parasit Vectors ; 8: 459, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26382743

RESUMO

BACKGROUND: Hemozoin is the pigment produced by some blood-feeding parasites. It demonstrates high diagnostic and therapeutic potential. In this work the formation of co-called hemozoin "knobs" - the bile duct ectasia filled up by hemozoin pigment - in Opisthorhis felineus infected hamster liver has been observed. METHODS: The O. felineus infected liver was examined by histological analysis and magnetic resonance imaging (MRI). The pigment hemozoin was identified by Fourier transform infrared spectroscopy and high resolution electrospray ionization mass spectrometry analysis. Hemozoin crystals were characterised by high resolution transmission electron microscopy. RESULTS: Hemozoin crystals produced by O. felineus have average length 403 nm and the length-to-width ratio equals 2.0. The regurgitation of hemozoin from parasitic fluke during infection leads to formation of bile duct ectasia. The active release of hemozoin from O. felineus during in vitro incubation has also been evidenced. It has been shown that the hemozoin knobs can be detected by magnetic resonance imaging. CONCLUSIONS: In the paper for the first time the characterisation of hemozoin pigment extracted from liver fluke O. felineus has been conducted. The role of hemozoin in the modification of immune response by opisthorchiasis is assumed.


Assuntos
Hemeproteínas/análise , Opistorquíase/patologia , Opisthorchis/química , Opisthorchis/crescimento & desenvolvimento , Animais , Cricetinae , Histocitoquímica , Fígado/patologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Opistorquíase/parasitologia , Pigmentos Biológicos/análise , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA