Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 85(7): 1001-1007, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759451

RESUMO

BACKGROUND: Perinatal stroke is a potentially debilitating injury, often under-diagnosed in the neonatal period. We conducted a pilot study investigating the role of the portable, non-invasive brain monitoring technique, diffuse optical tomography (DOT), as an early detection tool for infants with perinatal stroke. METHODS: Four stroke-affected infants were scanned with a DOT system within the first 3 days of life and compared to four healthy control subjects. Spectral power, correlation, and phase lag between interhemispheric low frequency (0.0055-0.3 Hz) hemoglobin signals were assessed. Optical data analyses were conducted with and without magnetic resonance imaging (MRI)-guided stroke localization to assess the efficacy of DOT when used without stroke anatomical information. RESULTS: Interhemispheric correlations of both oxyhemoglobin and deoxyhemoglobin concentration were significantly reduced in the stroke-affected group within the very low (0.0055-0.0095 Hz) and resting state (0.01-0.08 Hz) frequencies (p < 0.003). There were no interhemispheric differences for spectral power. These results were observed even without MRI stroke localization. CONCLUSION: This suggests that DOT and correlation-based analyses in the low-frequency range can potentially aid the early detection of perinatal stroke, prior to MRI acquisition. Additional methodological advances are required to increase the sensitivity and specificity of this technique.


Assuntos
Doenças do Recém-Nascido/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Diagnóstico Precoce , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Projetos Piloto , Tomografia Óptica
2.
Biomed Opt Express ; 9(6): 2648-2663, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258680

RESUMO

We introduce a compact time-domain system for near-infrared spectroscopy using a spread spectrum technique. The proof-of-concept single channel instrument utilises a low-cost commercially available optical transceiver module as a light source, controlled by a Kintex 7 field programmable gate array (FPGA). The FPGA modulates the optical transceiver with maximum-length sequences at line rates up to 10Gb/s, allowing us to achieve an instrument response function with full width at half maximum under 600ps. The instrument is characterised through a set of detailed phantom measurements as well as proof-of-concept in vivo measurements, demonstrating performance comparable with conventional pulsed time-domain near-infrared spectroscopy systems.

3.
Biomed Opt Express ; 8(3): 1754-1762, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663863

RESUMO

Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

4.
Neurophotonics ; 3(3): 031408, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27446969

RESUMO

Burst suppression (BS) is an electroencephalographic state associated with a profound inactivation of the brain. BS and pathological discontinuous electroencephalography (EEG) are often observed in term-age infants with neurological injury and can be indicative of a poor outcome and lifelong disability. Little is known about the neurophysiological mechanisms of BS or how the condition relates to the functional state of the neonatal brain. We used simultaneous EEG and diffuse optical tomography (DOT) to investigate whether bursts of EEG activity in infants with hypoxic ischemic encephalopathy are associated with an observable cerebral hemodynamic response. We were able to identify significant changes in concentration of both oxy and deoxyhemoglobin that are temporally correlated with EEG bursts and present a relatively consistent morphology across six infants. Furthermore, DOT reveals patient-specific spatial distributions of this hemodynamic response that may be indicative of a complex pattern of cortical activation underlying discontinuous EEG activity that is not readily apparent in scalp EEG.

6.
Biomed Opt Express ; 6(12): 4719-37, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26713189

RESUMO

In diffuse optical tomography (DOT), real-time image reconstruction of oxy- and deoxy-haemoglobin changes occurring in the brain could give valuable information in clinical care settings. Although non-linear reconstruction techniques could provide more accurate results, their computational burden makes them unsuitable for real-time applications. Linear techniques can be employed under the assumption that the expected change in absorption is small. Several approaches exist, differing primarily in their handling of regularization and the noise statistics. In real experiments, it is impossible to compute the true noise statistics, because of the presence of physiological oscillations in the measured data. This is even more critical in real-time applications, where no off-line filtering and averaging can be performed to reduce the noise level. Therefore, many studies substitute the noise covariance matrix with the identity matrix. In this paper, we examined two questions: does using the noise model with realistic, imperfect data yield an improvement in image quality compared to using the identity matrix; and what is the difference in quality between online and offline reconstructions. Bespoke test data were created using a novel process through which simulated changes in absorption were added to real resting-state DOT data. A realistic multi-layer head model was used as the geometry for the reconstruction. Results validated our assumptions, highlighting the validity of computing the noise statistics from the measured data for online image reconstruction, which was performed at 2 Hz. Our results can be directly extended to a real application where real-time imaging is required.

7.
J Biomed Opt ; 20(1): 016003, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25562501

RESUMO

The production of accurate and independent images of the changes in concentration of oxyhemoglobin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infrared light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and detector sensitivity. We describe the application of a data-driven approach to optimum wavelength selection for the second generation of University College London's multichannel, time-domain optical tomography system (MONSTIR II). By performing a functional activation experiment using 12 different wavelengths between 690 and 870 nm, we were able to identify the combinations of 2, 3, and 4 wavelengths which most accurately reproduced the results obtained using all 12 wavelengths via an imaging approach. Our results show that the set of 2, 3, and 4 wavelengths which produce the most accurate images of functional activation are [770, 810], [770, 790, 850], and [730, 770, 810, 850] respectively, but also that the system is relatively robust to wavelength selection within certain limits. Although these results are specific to MONSTIR II, the approach we developed can be applied to other multispectral near-infrared spectroscopy and optical imaging systems.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia Óptica/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Dedos/fisiologia , Hemoglobinas/análise , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Adulto Jovem
8.
J Exp Bot ; 64(1): 265-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23166371

RESUMO

Although self-incompatibility (SI) in plants has been studied extensively, far less is known about interspecific reproductive barriers. One interspecific barrier, known as unilateral incongruity or incompatibility (UI), occurs when species display unidirectional compatibility in interspecific crosses. In the wild tomato species Solanum pennellii, both SI and self-compatible (SC) populations express UI when crossed with domesticated tomato, offering a useful model system to dissect the molecular mechanisms involved in reproductive barriers. In this study, the timing of reproductive barrier establishment during pistil development was determined in SI and SC accessions of S. pennellii using a semi-in vivo system to track pollen-tube growth in developing styles. Both SI and UI barriers were absent in styles 5 days prior to flower opening, but were established by 2 days before flower opening, with partial barriers detected during a transition period 3-4 days before flower opening. The developmental expression dynamics of known SI factors, S-RNases and HT proteins, was also examined. The accumulation of HT-A protein coincided temporally and spatially with UI barriers in developing pistils. Proteomic analysis of stigma/styles from key developmental stages showed a switch in protein profiles from cell-division-associated proteins in immature stigma/styles to a set of proteins in mature stigma/styles that included S-RNases, HT-A protein and proteins associated with cell-wall loosening and defense responses, which could be involved in pollen-pistil interactions. Other prominent proteins in mature stigma/styles were those involved in lipid metabolism, consistent with the accumulation of lipid-rich material during pistil maturation.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteoma/metabolismo , Solanum/crescimento & desenvolvimento , Solanum/metabolismo , Análise de Variância , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Proteômica , Reprodução , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA