Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Anaesthesiologie ; 73(10): 668-675, 2024 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-39317820

RESUMO

BACKGROUND: The actual significance of prehospital immobilization of the cervical spine in severely injured trauma patients remains unclear. In view of possible negative implications, such as an increase in intracranial pressure due to the application of a rigid cervical spine orthosis, the long-term use must be critically questioned. Further studies are required to justify the long-term use of a rigid cervical spine orthosis in the prehospital setting. OBJECTIVE: Comparative measurements of the mobility of the cervical spine during immobilization using a vacuum mattress with or without the additional application of a rigid cervical spine orthosis after positioning on the stretcher were carried out. MATERIAL AND METHODS: Biomechanical measurements of the movement of the cervical spine were carried out by attaching inertial measurement units to a test person during the loading and unloading process in a modern ambulance and during the journey along a predefined parkour. The test person on whom the measurements were carried out was immobilized on a vacuum mattress with the option of lateral fixation of the head and chin and forehead strap on an electrohydraulic stretcher. The complete standard monitoring was set up to simulate as realistic a transport of a severely injured patient as possible. A total of 30 test runs were realized. In one half of the tests, the cervical spine was additionally immobilized using a rigid orthosis and in the other half a cervical spine orthosis was not used. For each of the 30 tests, the angles, axial rotation, lateral bending and flexion/extension as well as the first and second derivatives were considered for loading, transport and unloading and the parameters mean deviation from the zero position, size of the swept angle range and maximum were calculated for each test run. RESULTS: Statistically significant differences were only found for some biomechanical parameters in the sagittal plane (flexion and extension). No significant differences were found for the measured parameters in the other directions of movement (axial rotation, lateral flexion). In general, only very small angular deflections were measured both in the tests with the cervical spine orthosis and without the cervical spine orthosis (on average in the range of 1-2° for axial rotation and flexion/extension and up to 3° for lateral flexion). CONCLUSION: If immobilization is carried out correctly using a vacuum mattress with the option of lateral stabilization of the head and chin and a forehead strap on an electrohydraulic stretcher with a loading system, there are no relevant advantages with respect to the restriction of movement of the cervical spine by the additional use of a rigid cervical spine orthosis for the loading and unloading process or during the transport in a modern ambulance. It could therefore be advantageous to remove the rigid cervical spine orthosis initially applied for the rescue of the patient at the scene after the patient has been positioned on the vacuum mattress and stretcher to avoid potential negative effects of the rigid cervical spine orthosis for the period of transportation to the hospital.


Assuntos
Vértebras Cervicais , Imobilização , Humanos , Fenômenos Biomecânicos/fisiologia , Vértebras Cervicais/lesões , Vértebras Cervicais/fisiopatologia , Imobilização/instrumentação , Imobilização/métodos , Ambulâncias , Transporte de Pacientes/métodos , Aparelhos Ortopédicos , Braquetes , Masculino , Lesões do Pescoço/fisiopatologia , Lesões do Pescoço/terapia , Pescoço/fisiopatologia , Adulto , Traumatismos da Coluna Vertebral/terapia , Traumatismos da Coluna Vertebral/fisiopatologia , Ferimentos e Lesões/fisiopatologia , Ferimentos e Lesões/terapia
2.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931784

RESUMO

Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.


Assuntos
Distúrbios do Assoalho Pélvico , Diafragma da Pelve , Humanos , Diafragma da Pelve/fisiologia , Distúrbios do Assoalho Pélvico/fisiopatologia , Distúrbios do Assoalho Pélvico/diagnóstico , Feminino , Qualidade de Vida
3.
Technol Health Care ; 32(5): 3433-3442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905067

RESUMO

BACKGROUND: This study presents a comprehensive comparison between a marker-based motion capture system (MMC) and a video-based motion capture system (VMC) in the context of kinematic analysis using musculoskeletal models. OBJECTIVE: Focusing on joint angles, the study aimed to evaluate the accuracy of VMC as a viable alternative for biomechanical research. METHODS: Eighteen healthy subjects performed isolated movements with 17 joint degrees of freedom, and their kinematic data were collected using both an MMC and a VMC setup. The kinematic data were entered into the AnyBody Modelling System, which enables the calculation of joint angles. The mean absolute error (MAE) was calculated to quantify the deviations between the two systems. RESULTS: The results showed good agreement between VMC and MMC at several joint angles. In particular, the shoulder, hip and knee joints showed small deviations in kinematics with MAE values of 4.8∘, 6.8∘ and 3.5∘, respectively. However, the study revealed problems in tracking hand and elbow movements, resulting in higher MAE values of 13.7∘ and 27.7∘. Deviations were also higher for head and thoracic movements. CONCLUSION: Overall, VMC showed promising results for lower body and shoulder kinematics. However, the tracking of the wrist and pelvis still needs to be refined. The research results provide a basis for further investigations that promote the fusion of VMC and musculoskeletal models.


Assuntos
Amplitude de Movimento Articular , Humanos , Fenômenos Biomecânicos/fisiologia , Masculino , Adulto , Feminino , Amplitude de Movimento Articular/fisiologia , Movimento/fisiologia , Gravação em Vídeo , Articulações/fisiologia , Adulto Jovem , Modelos Biológicos , Captura de Movimento
4.
Med Eng Phys ; 121: 104059, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37985021

RESUMO

To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments.


Assuntos
Artroplastia do Ombro , Prótese Articular , Articulação do Ombro , Ombro/cirurgia , Amplitude de Movimento Articular , Artroplastia do Ombro/métodos , Articulação do Ombro/cirurgia
5.
PLoS One ; 18(11): e0292300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015902

RESUMO

BACKGROUND: Various rescue techniques are used for the prehospital transport of trauma patients. This study compares different techniques in terms of immobilization of the cervical spine and the rescue time. METHODS: A wireless motion capture system (Xsens Technologies, Enschede, The Netherlands) was used to record motion in three-dimensional space and the rescue time in a standardized environment. Immobilization was performed by applying different techniques through different teams of trained paramedics and physicians. All tests were performed on the set course, starting with the test person lying on the floor and ending with the test person lying on an ambulance cot ready to be loaded into an ambulance. Six different settings for rescue techniques were examined: rescue sheet with/without rigid cervical collar (P1S1, P1S0), vacuum mattress and scoop stretcher with/without rigid cervical collar (P2S1, P2S0), and long spinal board with/without rigid cervical collar (P3S1, P3S0). Four time intervals were defined: the time interval in which the rigid cervical collar is applied (T0), the time interval in which the test person is positioned on rescue sheet, vacuum mattress and scoop stretcher, or long spinal board (T1), the time interval in which the test person is carried to the ambulance cot (T2), and the time interval in which the ambulance cot is rolled to the ambulance (T3). An ANOVA was performed to compare the different techniques. RESULTS: During the simulated extrication procedures, a rigid cervical collar provided biomechanical stability at all angles with hardly any loss of time (mean angle ranges during T1: axial rotation P1S0 vs P1S1 p<0.0001, P2S0 vs P2S1 p<0.0001, P3S0 vs P3S1 p<0.0001; lateral bending P1S0 vs P1S1 p = 0.0263, P2S0 vs P2S1 p<0.0001, P3S0 vs P3S1 p<0.0001; flexion/extension P1S0 vs P1S1 p = 0.0023, P2S0 vs P2S1 p<0.0001). Of the three techniques examined, the scoop stretcher and vacuum mattress were best for reducing lateral bending in the frontal plane (mean angle ranges during T1: P2S1 vs P3S1 p = 0.0333; P2S0 vs P3S0 p = 0.0123) as well as flexion and extension in the sagittal plane (mean angle ranges during T2: P1S1 vs P2S1 p<0.0001; P1S0 vs P2S0 p<0.0001). On the other hand, the rescue sheet was clearly superior in terms of time (total duration P1S0 vs P2S0 p<0.001, P1S1 vs P2S1 p<0.001, P1S0 vs P3S0 p<0.001, P1S1 vs P3S1 p<0.001) but was always associated with significantly larger angular ranges of the cervical spine during the procedure. Therefore, the choice of technique depends on various factors such as the rescue time, the available personnel, as well as the severity of the suspected instability.


Assuntos
Imobilização , Macas , Humanos , Imobilização/métodos , Captura de Movimento , Vértebras Cervicais/lesões , Rotação , Amplitude de Movimento Articular , Fenômenos Biomecânicos
6.
Orthopadie (Heidelb) ; 52(11): 876-881, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37782318

RESUMO

When mental stress and musculoskeletal loading interact, the risk for injury increases due to altered body kinematics and increased muscle tension. These changes can be detected with musculoskeletal models, and mental loading and stress must be analyzed at emotional, cognitive, and behavioral levels. To investigate these kinematic and loading changes under stress, competitive athletes were subjected to mental stress during highly dynamic movements, and musculoskeletal models were used to analyze the biomechanical loading. It was shown that under mental stress, independent of the subjective perception, a strong change in muscle forces can occur. Accordingly, competitive athletes should undergo screenings to assess individual movement patterns and promote general stress resilience.


Assuntos
Lesões do Ligamento Cruzado Anterior , Futebol , Humanos , Futebol/lesões , Lesões do Ligamento Cruzado Anterior/prevenção & controle , Movimento/fisiologia , Músculos
7.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850874

RESUMO

Osteoporosis is a common disease of old age. However, in many cases, it can be very well prevented and counteracted with physical activity, especially high-impact exercises. Wearables have the potential to provide data that can help with continuous monitoring of patients during therapy phases or preventive exercise programs in everyday life. This study aimed to determine the accuracy and reliability of measured acceleration data at different body positions compared to accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been investigated in previous studies with regard to osteoporosis prevention. Data were collected using an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were included in this study. The analysis shows the correlation between impacts and the corresponding drop height, which are dependent on the respective exercise. Very high correlations (0.83-0.94) were found between accelerations at the pelvis and the other measured segments at the upper body. The foot sensors provided very weak correlations (0.20-0.27). Accelerations measured at the pelvis during jumping exercises can be tracked very well on the upper body and upper extremities, including locations where smart devices are typically worn, which gives possibilities for remote and continuous monitoring of programs.


Assuntos
Terapia por Exercício , Osteoporose , Humanos , Reprodutibilidade dos Testes , Exercício Físico , Aceleração
8.
J Orthop Res ; 41(6): 1356-1364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203348

RESUMO

Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding nonoperative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°, and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability.


Assuntos
Ligamentos Colaterais , Articulação do Cotovelo , Instabilidade Articular , Humanos , Cotovelo , Instabilidade Articular/cirurgia , Articulação do Cotovelo/cirurgia , Rádio (Anatomia)/cirurgia , Fenômenos Biomecânicos , Cadáver
10.
Technol Health Care ; 30(1): 177-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34806631

RESUMO

BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.


Assuntos
Música , Articulação do Ombro , Fenômenos Biomecânicos , Humanos , Ombro
11.
J Orthop Res ; 40(4): 846-853, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34057752

RESUMO

Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of -1.9 ± 2.2° (p < .001) for cup inclination and -15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from -4.4 to 4.6° for inclination and from -7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait.


Assuntos
Acetábulo , Artroplastia de Quadril , Marcha , Ossos Pélvicos , Acetábulo/cirurgia , Artroplastia de Quadril/efeitos adversos , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Masculino , Ossos Pélvicos/fisiologia , Estudos Prospectivos , Amplitude de Movimento Articular
12.
Comput Methods Biomech Biomed Engin ; 25(2): 156-164, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34180730

RESUMO

Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60% of simulations are located within a ± 30% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action.


Assuntos
Modelos Biológicos , Músculo Esquelético , Fenômenos Biomecânicos , Movimento , Incerteza
13.
J Biomech Eng ; 144(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34386814

RESUMO

Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.


Assuntos
Mãos , Modelos Biológicos , Fenômenos Biomecânicos , Eletromiografia , Mãos/fisiologia , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior
14.
Eur J Obstet Gynecol Reprod Biol ; 264: 306-313, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34358878

RESUMO

INTRODUCTION: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. METHODS: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. RESULTS: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. CONCLUSION: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system.


Assuntos
Dorso , Postura , Fenômenos Biomecânicos , Criança , Estudos de Viabilidade , Feminino , Humanos , Gravidez
15.
Front Psychol ; 12: 511746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135791

RESUMO

Embodiment theories have proposed a reciprocal relationship between emotional state and bodily reactions. Besides large body postures, recent studies have found emotions to affect rather subtle bodily expressions, such as slumped or upright sitting posture. This study investigated back muscle activity as an indication of an effect of positive and negative emotions on the sitting position. The electromyography (EMG) activity of six back muscles was recorded in 31 healthy subjects during exposure to positive and negative affective pictures. A resting period was used as a control condition. Increased muscle activity patterns in the back were found during the exposure to negative emotional stimuli, which was mainly measured in the lumbar and thorax regions. The positive emotion condition caused no elevated activity. The findings show that negative emotions lead to increased differential muscle activity in the back and thus corroborate those of previous research that emotion affects subtle bodily expressions.

16.
Sci Med Footb ; 5(4): 323-329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35077309

RESUMO

Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted.Materials & methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed.Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10% longer running times under stress (p < 0.001, d = -1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others.Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players' performance and changes in muscle force.


Assuntos
Futebol Americano , Traumatismos da Perna , Corrida , Futebol , Adolescente , Atletas , Futebol Americano/lesões , Humanos , Músculo Esquelético/lesões , Futebol/lesões
17.
Hip Int ; 31(5): 624-631, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32343622

RESUMO

BACKGROUND: Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity. METHODS: Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction. RESULTS: Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2% (gluteus medius). CONCLUSIONS: In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/cirurgia , Fêmur/cirurgia , Articulação do Quadril/cirurgia , Humanos , Reoperação
18.
Artigo em Inglês | MEDLINE | ID: mdl-33300810

RESUMO

Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.

19.
Sci Rep ; 10(1): 13208, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764592

RESUMO

Offset restoration in total hip arthroplasty (THA) is associated with postoperative range of motion (ROM) and gait kinematics. We aimed to research into the impact of high offset (HO) and standard stems on postoperative ROM. 121 patients received cementless THA through a minimally-invasive anterolateral approach. A 360° hip ROM analysis software calculated impingement-free hip movement based on postoperative 3D-CTs compared to ROM values necessary for activities of daily living (ADL). The same model was then run a second time after changing the stem geometry between standard and HO configuration with the implants in the same position. HO stems showed higher ROM for all directions between 4.6 and 8.9° (p < 0.001) compared with standard stems but with high interindividual variability. In the subgroup with HO stems for intraoperative offset restoration, the increase in ROM was even higher for all ROM directions with values between 6.1 and 14.4° (p < 0.001) compared to offset underrestoration with standard stems. Avoiding offset underrestoration resulted in a higher amount of patients of over 20% for each ROM direction that fulfilled the criteria for ADL (p < 0.001). In contrast, in patients with standard stems for offset restoration ROM did increase but not clinically relevant by offset overcorrection for all directions between 3.1 and 6.1° (p < 0.001). Offset overcorrection by replacing standard with HO stems improved ROM for ADL in a low number of patients below 10% (p > 0.03). Patient-individual restoration of offset is crucial for free ROM in THA. Both over and underrestoration of offset should be avoided.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Amplitude de Movimento Articular , Idoso , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos , Período Pós-Operatório , Tomografia Computadorizada por Raios X
20.
J Biomech ; 106: 109817, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517973

RESUMO

Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach.


Assuntos
Articulação do Ombro , Ombro , Fenômenos Biomecânicos , Humanos , Úmero , Amplitude de Movimento Articular , Escápula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA