Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cytotechnology ; 76(1): 53-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304630

RESUMO

In recent years, gastric cancer (GC) is still one of the major public health burdens in the world. It is reported that exosome circular RNA (circRNA) is involved in the GC progression. However, the function and potential mechanism of circGMPS in GC remains unclear and needs further exploration. In this study, we isolated and identified exosomes from serum by TEM, NTA analysis and Western blot. RNA expression was evaluated by qRT-PCR. Western blot was employed to examine protein expression. Cell proliferation was measured using CCK-8. Transwell assay was adopted to analyze cell migration and invasion. The relationship between genes was explored through bioinformatics analysis, dual-luciferase reporter gene assay and spearman correlation coefficient. We found that circGMPS was elevated in GC exosomes, tissues and cells. Poor prognosis of GC patients was related to high circGMPS expression. Both exosome co-culture with cells and insertion of circGMPS clearly promoted cell progression. Mechanically, circGMPS sponged miR-144-3p to regulate PUM1. Inhibition of PUM1 or miR-144-3p overexpression inhibited the malignant GC cell progression. Our data confirmed that exosome-derived circGMPS boosted malignant progression by miR-144-3p/PUM1 axis in GC cells, providing strong evidences for circGMPS as a clinical biomarker of GC treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00597-9.

2.
J Colloid Interface Sci ; 652(Pt B): 1578-1587, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666190

RESUMO

Excellent porosity and accessibility are key requirements during carbon-based materials design for energy conversion applications. Herein, a Ni-based porous supramolecular framework with graphite-like morphology (Ni-SOF) was rationally designed as a carbon precursor. Ultrathin carbon nanosheets dispersed with Ni nanoparticles and Ni-Nx sites (Ni@NiNx-N-C) were obtained via in-situ exfoliation during pyrolysis. Due to the hetero-porous structure succeeding from Ni-SOF, the Ni@NiNx-N-C catalyst showed outstanding bifunctional oxygen electrocatalytic activity with a narrow gap of 0.69 V between potential to deliver 10 mA cm-2 oxygen evolution and half-wave potential of oxygen reduction reaction, which even surpassed the Pt/C + IrO2 pair. Therefore, the corresponding zinc-air battery exhibited excellent power output and stability. The multiple Ni-based active sites, the unique 2D structure with a high graphitization degree and large specific surface area synergistically contributed to the excellent bifunctional electrocatalytic activity of Ni@NiNx-N-C. This work provided a novel viewpoint for the development of carbon-based electrocatalyst.

3.
Biochem Genet ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730964

RESUMO

In recent years, circular RNAs (circRNAs) are extensively studied in the progression of various types of cancer, while the mechanism of circKIAA1797 is rarely studied in gastric cancer (GC). Hence, this research aimed to investigate the expression of exosomal circKIAA1797 and its biological function in GC cells. Exosomes were extracted from the serum of GC patients and identified by transmission electron microscopy (TEM) and nanoparticle tracking analyzer (NTA). CD81, CD63, Bcl-2, Bax, and pre-leukemia transcription factor 3 (PBX3) protein levels were detected using western blot assay. circKIAA1797, microRNA-4429 (miR-4429), and PBX3 mRNA were determined by quantitative real-time PCR (RT-qPCR). Cell proliferation, migration, invasion, and apoptosis were assessed using colony formation assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, and flow cytometry assay. Glucose consumption and lactate production levels were examined using glycolysis detection kits. The interaction between miR-4429 and circKIAA1797 or PBX3 was identified using dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. Xenograft mouse model assay was used to investigate the effect of exosomal circKIAA1797 in vivo. It was found that circKIAA1797 was up-regulated in GC tissues and cells, as well as in the exosomes derived from the serum of GC patients. Silencing of exosomal circKIAA1797 could hamper cell progression and glycolytic metabolism of GC. Mechanically, circKIAA1797 acted as a sponge of miR-4429 to regulate PBX3 expression. Moreover, the knockdown of exosomal circKIAA1797 repressed tumor growth in vivo. Our data demonstrated that knockdown of exosomal circKIAA1797 suppressed GC malignant phenotypes by regulating miR-4429/PBX3 axis, which might offer a promising therapeutic strategy for GC treatment.

4.
Chem Asian J ; 18(20): e202300601, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37646223

RESUMO

Carbon-supported Pt is currently used as catalyst for oxygen reduction reaction (ORR) in fuel cells but is handicapped by carbon corrosion at high potential. Herein, a stable PtNi/SnO2 interface structure has been designed and achieved by a two-step solvothermal method. The robust and conductive Sb-doped SnO2 supports provide sufficient surfaces to confine PtNi alloy. Moreover, PtNi/Sb0.11 SnO2 presents a more strongly coupled Pt-SnO2 interface with lattice overlap of Pt (111) and SnO2 (110), together with enhanced electron transfer from SnO2 to Pt. Therefore, PtNi/Sb0.11 SnO2 exhibits a high catalytic activity for ORR with a half-wave potential of 0.860 V versus reversible hydrogen electrode (RHE) and a mass activity of 166.2 mA mgPt -1 @0.9 V in 0.1 M HClO4 electrolyte. Importantly, accelerated degradation testing (ADT) further identify the inhibition of support corrosion and agglomeration of Pt-based active nanoparticles in PtNi/Sb0.11 SnO2 . This work highlights the significant importance of modulating metal-support interactions for improving the catalytic activity and durability of electrocatalysts.

5.
ACS Nano ; 17(16): 15504-15515, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37540759

RESUMO

The batch production of high-purity hydrogen is a key problem that restricts the progress of fuel cells and the blueprint for achieving carbon neutrality. Transition-metal chalcogenide heterojunctions exhibit certain activity toward electrochemical overall water splitting (EOWS), but their high-current-density catalytic performances are still unsatisfactory due to the slow kinetic progression (H* or *O → *OOH). Inspired by the "electron pocket" theory, we designed a Ni-Mo bimetallic disulfide interface heterojunction electrocatalyst system (NM-IHJ-V) with high electronic storage capacity around the Fermi level (-0.5 eV, +0.5 eV) (e-DFE), which injects more power into the kinetic progression processes of intermediate species in the EOWS process. Consequently, it achieves a superhigh current density of 2 A cm-2 level for EOWS (only 1.98 V voltage is needed), which is 11.23-fold higher than that of the benchmarked Pt/C//IrO2 (178 mA cm-2@1.98 V), as well as an excellent long-term stability of 200 h. Most strikingly, NM-IHJ-V can efficiently produce hydrogen at currents up to 5 A. Our proposed strategy of constructing catalysts to produce hydrogen at superhigh current density through the electron pocket theory will supply valuable insights for the designing other catalytic systems.

6.
Dalton Trans ; 52(6): 1642-1649, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36648310

RESUMO

Rational construction of nanosized anode nanomaterials is crucial to enhance the electrochemical performance of lithium-/sodium-ion batteries (LIBs/SIBs). Various anode nanoparticles are created mainly via templating surface confinement, or encapsulation within precursors (such as metal-organic frameworks). Herein, low-content SnO2 nanodots on N-doped reduced graphene oxide (SnO2@N-rGO) were prepared as anode nanomaterials for LIBs and SIBs, via a distinctive lattice confinement of a CoAlSn-layered double hydroxide (CoAlSn-LDH) precursor. The SnO2@N-rGO composite exhibits the advantagous features of low-content (17.9 wt%) and uniform SnO2 nanodots (3.0 ± 0.5 nm) resulting from the lattice confinement of the Co and Al species to the surrounded Sn within the same crystalline layer, and high-content conductive rGO. The SnO2@N-rGO composite delivers a highly reversible capacity of 1146.2 mA h g-1 after 100 cycles at 0.1 A g-1 for LIBs, and 387 mA h g-1 after 100 cycles at 0.1 A g-1 for SIBs, outperforming N-rGO. Furthermore, the dominant capacitive contribution and the rapid electronic and ionic transfer, as well as small volume variation, all give rise to the enhancement. Precursor-based lattice confinement could thus be an effective strategy for designing and preparing uniform nanodots as anode nanomaterials for electrochemical energy storage.

7.
Inorg Chem ; 61(36): 14419-14427, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037068

RESUMO

Even though extensive efforts have been devoted to mixing Pd nanocrystals with Ni(OH)2 for the enhanced synergy, it remains a great challenge to incorporate nanosized Ni(OH)2 species on the Pd electrode and reveal their synergy. Herein, we present spongelike Pd nanocrystals with the modification of amorphous Ni(OH)2 species. The catalyst configuration is first considered by compositing Pd with Ni(OH)2 species to optimize the Pd-Pd interatomic distance and then constructing a strongly coupled interface between Pd nanostructures and Ni(OH)2 species. For the ethanol oxidation reaction (EOR) and the formic acid oxidation reaction (FAOR), Pd-Ni(OH)2 composites exhibit an impressive mass activity of 4.98 and 2.65 A mgPd-1, respectively. Most impressively, there is no significant decrease in the EOR activity during five consecutive cycles (50 000 s). A series of CO-poisoning tests have proved that the enhanced EOR and FAOR performances involve synergy between Pd nanostructures and Ni(OH)2 species.

8.
J Colloid Interface Sci ; 619: 359-368, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398766

RESUMO

Rational design of high-capacity nanosized composites as anode nanomaterials is crucial to boosting electrochemical performances towards large-scale application for lithium- and sodium-ion batteries (LIBs and SIBs). The small sizes and homogeneous dimensional size distributions are achieved typically by either the surface confinement on the underlying supports, or the encapsulation confinement within the precursors (such as metal-organic frameworks). Herein, we report the ultrasmall NiS2 nanodots on reduced graphene oxide (NiS2/N,S-rGO) synthesized via interlayer confinement as anode nanomaterials for LIBs and SIBs. The composite is synthesized by pyrolyzing a host/guest precursor of sodium dodecyl sulfate ion/[NiEDTA]2- anions co-intercalated MgAl-layered double hydroxide LDH host, without additional sulfur source. The host/guest-derived interlayer nanoconfinement enables the composite to integrate the advantageous features: low-content active NiS2 nanodots (11.0 wt%) with a mean size of 3.8 ± 0.5 nm, high-content N,S-rGO (89.0 wt%), as well as a large specific surface area and mesopore size distribution. The composite used as anode nanomaterial exhibits reversible capacities of 801.2 mAh g-1 after 100 cycles at 100 mA g-1 for LIBs, and 207.7 mAh g-1 after 200 cycles at 0.1 A g-1 for SIBs, which are greatly higher than those of the pristine N,S-rGO without NiS2 nanodots. The enhancement is experimentally supported by the low charge transfer resistance, high capacitive-controlled contribution, and good structural stability. Our guest/host-based interlayer nanoconfinement can promise an effective synthesis strategy for designing various nanosized anodes for electrochemical energy storage.

9.
J Colloid Interface Sci ; 611: 327-335, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34965487

RESUMO

Palladium (Pd) is supposed to be one of the most promising catalytic metals towards ethanol (C2H5OH) oxidation reaction (EOR). However, Pd electrocatalysts easily suffer from the poisoning of the intermediates (especially CO), resulting in the quick decay of EOR catalysis. Herein, inspired by the Brønsted-Lowry acid-base theory, a "attraction-repulsion" concept is proposed to guide the surface structure engineering toward EOR catalysts. Specifically, we induce Bi(OH)3 species as Brønsted base onto PdBi nanoplates to effectively repel the adsorption of CO intermediates. The PdBi-Bi(OH)3 nanoplates show an impressive mass activity of 4.46 A mgPd-1 during the EOR catalysis and keep excellent stability. Both the stability and enhanced performance are attributed by the interfacial Brønsted base Bi(OH)3 which can selectively attract and repel reactants and intermediates, as evidenced from in situ measurements and theoretical views.

10.
Small Methods ; 5(8): e2100234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34927876

RESUMO

Single-crystal nickel-rich cathode materials (SC-NRCMs) are the most promising candidates for next-generation power batteries which enable longer driving range and reliable safety. In this review, the outstanding advantages of SC-NRCMs are discussed systematically in aspects of structural and thermal stabilities. Particularly, the intergranular-crack-free morphology exhibits superior cycling performance and negligible parasitic reactions even under severe conditions. Besides, various synthetic methods are summarized and the relation between precursor, sintering process, and final single-crystal products are revealed, providing a full view of synthetic methods. Then, challenges of SC-NRCMs in fields of kinetics of lithium diffusion and the one particularly occurred at high voltage (intragranular cracks and aggravated parasitic reactions) are discussed. The corresponding mechanism and modifications are also referred. Through this review, it is aimed to highlight the magical morphology of SC-NRCMs for application perspective and provide a reference for following researchers.

11.
Nanoscale ; 13(43): 18273-18280, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714896

RESUMO

Electrochemical water splitting is a promising method to generate pollution-free and sustainable hydrogen energy. However, the specific activity and durability of noble metal catalysts is the main hindrance to the hydrogen evolution reaction. Based on the continuous pore regulation of hollow porous carbon spheres (N-HPCSs) by hexadecyl trimethyl ammonium bromide, the 6.21 wt% Pt/N-HPCSs exhibited good dispersibility, according to a low overpotential of 45 mV (10 mA cm-2/1 M KOH). Its mass activity was 4 times that of the commercial 20 wt% Pt/C at -0.07 V (vs. RHE) potential. We analyse that the excellent activity is due to the interaction between Pt nanoparticles and N-HPCSs so that the electron density around the Pt atoms increases, which is beneficial for H2O to obtain electrons and transform into Had. Meanwhile the sea urchin-like structure of N-HPCSs facilitates the desorption of H2. Furthermore, the overpotential showed no obvious decrease in the long-term durability test, which should be attributed to the confinement of Pt nanoparticles by the well-defined pores in N-HPCSs to avoid the aggregation of Pt nanoparticles during long-term testing.

12.
ACS Appl Mater Interfaces ; 13(7): 8306-8314, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33591161

RESUMO

The innovation in highly efficient, stable, and economical bifunctional overall water-splitting electrocatalysts is critical in developing sustainable energy, but it remains challenging. In this research, we have developed an unsophisticated method to synthesize hybrid nanoparticles (FeN0.023/Mo2C/C) uniformly dispersed in nitrogen-doped carbon nanosheets. The two active components FeN0.023 and Mo2C are coupled to form an FeN0.023/Mo2C/C heterostructure being a highly efficient electrocatalyst, which gives low overpotentials of 227/76 mV for OER/HER at 10 mA cm-2 current density. The alkaline-electrolyzer with FeN0.023/Mo2C/C as the anode-cathode catalyst needs merely 1.55 V to reach 10 mA cm-2 and can maintain a stable state for a minimum of 10 h. This research gives a simple effective resolution in designing affordable and useful overall water-splitting electrocatalysts.

13.
Materials (Basel) ; 13(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580334

RESUMO

Carbon nanotubes (CNTs) are considered as one of the ideal modifiers of cement materials, since CNTs can improve the mechanical properties of cement paste effectively. However, the interfacial interaction between CNTs and the cement matrix is weak. Moreover, it is difficult to disperse CNTs within cement paste. To overcome these shortages, in this study, CNTs were firstly dispersed into a styrene-acrylic emulsion (SAE). Then the homo-dispersion CNT/SAE emulsion was incorporated into cement paste. The effect of the CNT/SAE hybrid-system on the mechanical properties and microstructure of cement paste was studied. For purposes of comparison, the properties of cement paste mono incorporating CNTs or SAE are also investigated. The results show that CNT/SAE network films could be observed in cement paste by using a field emission scanning electron microscope (FESEM). These network films could bridge the cracks and refine the pores of a cement matrix. Infrared analysis and Raman spectroscopy show that the CNT/SAE hybrid modifier has stronger interfacial adhesion and better load transfer ability over the mono adding of CNTs and SAE emulsion. As a result, the hybrid addition of CNT/SAE significantly improved the flexural strength of cement paste. Especially, the addition of 0.1% CNTs and 15% SAE by mass of cement improved the 28-day flexural strength of cement paste by 21% and 25% as compared to the mono addition of CNTs or SAE, respectively.

14.
Sensors (Basel) ; 18(5)2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29757246

RESUMO

A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.

15.
Appl Opt ; 56(26): 7450-7453, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29048068

RESUMO

The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range. An optical fiber F-P pressure sensor based on micro-electro-mechanical system (MEMS) has been fabricated to carry out the experiment, and the results show that the resolution of the algorithm can reach nano-scale level, the sensor's sensitivity is about 2.5 nm/KPa, which is similar to the theoretical value, and this sensor has great reproducibility.

16.
Oncol Rep ; 35(5): 2977-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935987

RESUMO

Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-ß-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Movimento Celular , Forma Celular/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Células Hep G2 , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Sulfóxidos , Fator de Crescimento Transformador beta/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nanoscale ; 8(3): 1580-7, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26692228

RESUMO

Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm(2) g(-1)) and a pore volume of 1.14 cm(3) g(-1). Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.

18.
ChemSusChem ; 7(12): 3435-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25293508

RESUMO

N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity.


Assuntos
Carbono/química , Ferro/química , Nitrogênio/química , Oxigênio/química , Catálise , Microscopia Eletrônica de Varredura , Oxirredução
19.
ChemSusChem ; 6(5): 807-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23495108

RESUMO

Catalytic carbon: Nitrogen-doped porous carbon (CN(x)) electrocatalysts are derived from inexpensive melamine formaldehyde resins. These potential PEMFC catalysts are synthesized by using a facile method, which yields materials that contain a meso- and macroporous structure. The carbon-based materials display attractive catalytic activity toward ORR and superior stability compared to a commercial Pt-based catalyst.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Nitrogênio/química , Oxigênio/química , Triazinas/química , Catálise , Formaldeído/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA