Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Sci Adv ; 10(27): eadn7896, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968361

RESUMO

Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.


Assuntos
Carbono , Raios Infravermelhos , Neoplasias , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Animais , Imagem Óptica/métodos , Camundongos , Linhagem Celular Tumoral
2.
Innovation (Camb) ; 5(3): 100620, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706954

RESUMO

In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.

3.
Nat Commun ; 15(1): 4363, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778087

RESUMO

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Assuntos
Neoplasias da Mama , Microfluídica , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Medicina de Precisão/métodos , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Microfluídica/métodos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
4.
Adv Sci (Weinh) ; 11(21): e2400888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638003

RESUMO

Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-ß (IFNß) by MSCs. IFNß reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.


Assuntos
Interferon beta , Células Matadoras Naturais , Células-Tronco Mesenquimais , Células Neoplásicas Circulantes , Nucleotidiltransferases , Transdução de Sinais , Microambiente Tumoral , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Células Matadoras Naturais/imunologia , Camundongos , Interferon beta/metabolismo , Interferon beta/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Células Neoplásicas Circulantes/imunologia , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral/imunologia , Proteínas de Membrana/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral
5.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617536

RESUMO

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Assuntos
Neoplasias Colorretais , Mutações Sintéticas Letais , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Fosforilação , Citoplasma , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , PTEN Fosfo-Hidrolase/genética
7.
J Mol Med (Berl) ; 102(5): 693-707, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492027

RESUMO

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.


Assuntos
Proteína Morfogenética Óssea 4 , Proteínas de Choque Térmico HSP70 , Camundongos Transgênicos , Regiões Promotoras Genéticas , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Resposta ao Choque Térmico/genética , Crânio/metabolismo , Regulação da Expressão Gênica , Integrases/metabolismo , Integrases/genética
8.
Biofabrication ; 16(2)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306665

RESUMO

The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Técnicas de Cocultura , Microambiente Tumoral
9.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332150

RESUMO

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Sirtuínas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo
10.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212325

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutação/genética , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Microambiente Tumoral
12.
Bioeng Transl Med ; 8(6): e10586, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023722

RESUMO

Postoperative adjuvant chemotherapy (AC) for poor responders to neoadjuvant chemoradiotherapy (nCRT) remains debatable among patients with locally advanced rectal cancer (LARC), necessitating biomarkers to accurately predict the benefits of AC. This study aimed to develop a patient-derived tumor organoid (PDTO) platform to predict the benefit of AC in LARC patients showing poor nCRT response. PDTOs were established using irradiated rectal cancer specimens with poor nCRT responses, and their sensitivity to chemotherapy regimens was tested. The half-maximal inhibitory concentration (IC50) value for the PDTO drug test was defined based on the clinical outcomes, and the accuracy of the PDTO prognostic predictions was calculated. Predictive models were developed and validated using the PDTO drug test results. Between October 2018 and December 2021, 86 PDTOs were successfully constructed from 138 specimens (success rate 62.3%). The optimal IC50 cut-off value for the organoid drug test was 39.31 µmol/L, with a sensitivity of 84.75%, a specificity of 85.19%, and an accuracy of 84.88%. Multivariate Cox regression analysis revealed that the PDTO drug test was an independent predictor of prognosis. A nomogram based on the PDTO drug test was developed, showing good prognostic ability in predicting the 2-year and 3-year disease-free survivals (AUC of 0.826 [95% CI, 0.721-0.931] and 0.902 [95% CI, 0.823-0.982], respectively) and overall survivals (AUC of 0.859 [95% CI, 0.745-0.973] and 0.885 [95% CI, 0.792-0.978], respectively). The PDTO drug test can predict the benefit of postoperative AC in poor responders with LARC to nCRT.

13.
J Control Release ; 362: 524-535, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673307

RESUMO

Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.

14.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527025

RESUMO

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sarcoma , Criança , Humanos , Adolescente , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Sarcoma/genética
15.
iScience ; 26(7): 107116, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426352

RESUMO

Patient-derived tumor organoids (PDTOs) have the potential to be used to predict the patient response to chemotherapy. However, the cutoff value of the half-maximal inhibition concentration (IC50) for PDTO drug sensitivity has not been validated with clinical cohort data. We established PDTOs and performed a drug test in 277 samples from 242 CRC patients who received FOLFOX or XELOX chemotherapy. After follow-up and comparison of the PDTO drug test and final clinical outcome results, the optimal IC50 cutoff value for PDTO drug sensitivity was 43.26 µmol/L. This PDTO drug test-defined cutoff value could predict patient response with 75.36% sensitivity, 74.68% specificity, and 75% accuracy. Moreover, this value distinguished groups of patients with significant differences in survival benefit. Our study is the first to define the IC50 cutoff value for the PDTO drug test to effectively distinguish CRC patients with chemosensitivity or nonsensitivity and predict survival benefits.

16.
FASEB J ; 37(8): e23073, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402125

RESUMO

In female mammals, the oviduct and uterus are essential sites for female and male gamete transport, fertilization, implantation, and maintenance of a successful pregnancy. To delineate the reproductive function of Mothers against decapentaplegic homolog 4 (Smad4), we specifically inactivated Smad4 in ovarian granulosa cells and, oviduct and uterine mesenchymal cells using the Amhr2-cre mouse line. Deletion of exon 8 of Smad4 results in the production of an MH2-truncated SMAD4 protein. These mutant mice are infertile due to the development of oviductal diverticula and defects during the implantation process. The ovaries are fully functional as demonstrated in an ovary transfer experiment. The development of oviductal diverticula occurs shortly after puberty and is dependent on estradiol. The diverticula interfere with sperm migration and embryo transit to the uterus, reducing the number of implantation sites. Analysis of the uterus shows that, even if implantation occurs, decidualization and vascularization are defective resulting in embryo resorption as early as the seventh day of pregnancy. Thus, Smad4 plays an important function in female reproduction by controlling the structural and functional integrity of the oviduct and uterus.


Assuntos
Estradiol , Proteína Smad4 , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Implantação do Embrião , Estradiol/metabolismo , Mamíferos/metabolismo , Oviductos/metabolismo , Sêmen/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Útero/metabolismo
17.
Cell Regen ; 12(1): 24, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378693

RESUMO

Intestinal cancer is one of the most frequent and lethal types of cancer. Modeling intestinal cancer using organoids has emerged in the last decade. Human intestinal cancer organoids are physiologically relevant in vitro models, which provides an unprecedented opportunity for fundamental and applied research in colorectal cancer. "Human intestinal cancer organoids" is the first set of guidelines on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods for human intestinal cancer organoids, which apply to the production and quality control during the process of manufacturing and testing of human intestinal cancer organoids. It was released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practocal protocols, and accelerate the international standardization of human intestinal cancer organoids for clinical development and therapeutic applications.

18.
Pharmacol Res ; 194: 106830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343647

RESUMO

Drug combination therapy is a highly effective approach for enhancing the therapeutic efficacy of anti-cancer drugs and overcoming drug resistance. However, the innumerable possible drug combinations make it impractical to screen all synergistic drug pairs. Moreover, biological insights into synergistic drug pairs are still lacking. To address this challenge, we systematically analyzed drug combination datasets curated from multiple databases to identify drug pairs more likely to show synergy. We classified drug pairs based on their MoA and discovered that 110 MoA pairs were significantly enriched in synergy in at least one type of cancer. To improve the accuracy of predicting synergistic effects of drug pairs, we developed a suite of machine learning models that achieve better predictive performance. Unlike most previous methods that were rarely validated by wet-lab experiments, our models were validated using two-dimensional cell lines and three-dimensional tumor slice culture (3D-TSC) models, implying their practical utility. Our prediction and validation results indicated that the combination of the RTK inhibitors Lapatinib and Pazopanib exhibited a strong therapeutic effect in breast cancer by blocking the downstream PI3K/AKT/mTOR signaling pathway. Furthermore, we incorporated molecular features to identify potential biomarkers for synergistic drug pairs, and almost all potential biomarkers found connections between drug targets and corresponding molecular features using protein-protein interaction network. Overall, this study provides valuable insights to complement and guide rational efforts to develop drug combination treatments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos
19.
Cell Regen ; 12(1): 23, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314549

RESUMO

Organoids have attracted great interest for disease modelling, drug discovery and development, and tissue growth and homeostasis investigations. However, lack of standards for quality control has become a prominent obstacle to limit their translation into clinic and other applications. "Human intestinal organoids" is the first guideline on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods, inspection rules for human intestinal organoids, which is applicable to quality control during the process of manufacturing and testing of human intestinal organoids. It was originally released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of human intestinal organoids for applications.

20.
Nat Commun ; 14(1): 2518, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130873

RESUMO

Clinical updates suggest conserving metastatic sentinel lymph nodes (SLNs) of breast cancer (BC) patients during surgery; however, the immunoadjuvant potential of this strategy is unknown. Here we leverage an immune-fueling flex-patch to animate metastatic SLNs with personalized antitumor immunity. The flex-patch is implanted on the postoperative wound and spatiotemporally releases immunotherapeutic anti-PD-1 antibodies (aPD-1) and adjuvants (magnesium iron-layered double hydroxide, LDH) into the SLN. Genes associated with citric acid cycle and oxidative phosphorylation are enriched in activated CD8+ T cells (CTLs) from metastatic SLNs. Delivered aPD-1 and LDH confer CTLs with upregulated glycolytic activity, promoting CTL activation and cytotoxic killing via metal cation-mediated shaping. Ultimately, CTLs in patch-driven metastatic SLNs could long-termly maintain tumor antigen-specific memory, protecting against high-incidence BC recurrence in female mice. This study indicates a clinical value of metastatic SLN in immunoadjuvant therapy.


Assuntos
Linfonodo Sentinela , Feminino , Camundongos , Animais , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Recidiva Local de Neoplasia/patologia , Adjuvantes Imunológicos/uso terapêutico , Linfonodos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA