Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Reprod Immunol ; 163: 104212, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38432052

RESUMO

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.

2.
J Dairy Sci ; 107(1): 555-572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220437

RESUMO

Endometritis is one of the most common causes of infertility in dairy cows, and is histopathologically characterized by inflammation and damage of endometrial epithelium. Interferon-tau (IFN-τ) is a novel type I interferon secreted by ruminant trophoblast cells with low cytotoxicity even at high doses. Previous studies suggested that IFN-τ plays an important role in inflammation. However, the mechanisms whereby IFN-τ may modulate the inflammatory responses in the bovine endometrium are unknown. In the present study, primary bovine endometrial epithelial cells (BEEC) isolated from fresh and healthy uterine horns were used for in vitro studies. The integrity of BEEC was assessed by immunofluorescence staining for cytokeratin 18 (CK-18, a known epithelial marker). For the experiments, BEEC were stimulated with different concentrations of lipopolysaccharide (LPS; 0-20 µg/mL) for different times (0-24 h). Cell viability and apoptosis were assessed via CCK-8 and flow cytometry. In a preliminary study, we observed that compared with the control group without LPS, 10 µg/mL of LPS stimulation for 24 h induced apoptosis. In a subsequent study, 20 or 40 ng/mL of IFN-τ alleviated LPS-induced apoptosis. Relative to the LPS group, western blotting further revealed that IFN-τ inhibited the protein abundance of TLR4 and phosphorylated (p-) p65 (p-p65) and Bax/Bcl-2 ratio, suggesting that IFN-τ can protect BEEC against inflammatory injury. Furthermore, the protein abundance of p-phosphoinositide 3-kinase (p-PI3K), p-protein kinase B (p-AKT), p-glycogen synthase kinase-3ß (p-GSK3ß), ß-catenin, and p-forkhead box O1 (p-FoxO1) was lower in the LPS group, whereas IFN-τ upregulated their abundance. The use of LY294002, a specific inhibitor of PI3K/AKT, attenuated the upregulation of p-PI3K, p-AKT p-GSK3ß, ß-catenin, and p-FoxO1 induced by IFN-τ, and also blocked the downregulation of TLR4, p-p65, and Bax/Bcl-2 ratio. This suggested that the inhibition of TLR4 signaling by IFN-τ was mediated by the PI3K/AKT pathway. Furthermore, compared with the LPS group, the ß-catenin agonist SB216763 led to greater p-FoxO1 and lower p-p65 and cell apoptosis. In contrast, knockdown of ß-catenin using small interfering RNA had the opposite effects. To explore the role of FoxO1 on the inhibition of TLR4 by IFN-τ, we employed LY294002 to inhibit the PI3K/AKT while FoxO1 was knocked down. Results revealed that the knockdown of FoxO1 blocked the upregulation of TLR4 and p-p65 induced by LY294002, and enhanced the inhibition of IFN-τ on TLR4, p-p65, and cell apoptosis. Overall, these findings confirmed that IFN-τ can protect endometrial epithelial cells against inflammatory injury via suppressing TLR4 activation through the regulation of the PI3K/AKT/ß-catenin/FoxO1 axis. These represent new insights into the molecular mechanisms underlying the anti-inflammatory function of IFN-τ in BEEC, and also provide a theoretical basis for further studies on the in vivo application of IFN-τ to help prevent negative effects of endometritis.


Assuntos
Doenças dos Bovinos , Endometrite , Interferon Tipo I , Animais , Bovinos , Feminino , Apoptose , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo , Doenças dos Bovinos/prevenção & controle , Endometrite/prevenção & controle , Endometrite/veterinária , Endométrio/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/veterinária , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Analyst ; 149(3): 859-869, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167646

RESUMO

High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Verde de Indocianina/toxicidade , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
BMC Vet Res ; 19(1): 271, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087280

RESUMO

BACKGROUND: Peripheral blood carries a reservoir of mRNAs that regulate cardiac structure and function potential. Although it is well recognized that the typical symptoms of Myxomatous Mitral Valve Disease (MMVD) stage B2 are long-standing hemodynamic disorder and cardiac structure remodeling caused by mitral regurgitation, the transcriptomic alterations in blood from such dogs are not understood. RESULTS: In the present study, comparative high-throughput transcriptomic profiling of blood was performed from normal control (NC) and naturally-occurring MMVD stage B2 (MMVD) dogs. Using Weighted Gene Co-expression Network Analyses (WGCNA), Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG), we identified that the turquoise module was the most highly correlated with echocardiographic features and found 64 differentially expressed genes (DEGs) that were significantly enriched in platelet activation related pathways. Therefore, from the turquoise module, we selected five DEGs (MDM2, ROCK1, RIPK1, SNAP23, and ARHGAP35) that, according to real-time qPCR, exhibited significant enrichment in platelet activation related pathways for validation. The results showed that the blood transcriptional abundance of MDM2, ROCK1, RIPK1, and SNAP23 differed significantly (P < 0.01) between NC and MMVD dogs. On the other hand, Correlation Analysis revealed that MDM2, ROCK1, RIPK1, and SNAP23 genes negatively regulated the heart structure parameters, and followed the same trend as observed in WGCNA. CONCLUSION: We screened four platelet activation related genes, MDM2, ROCK1, RIPK1, and SNAP23, which may be considered as the candidate biomarkers for the diagnosis of MMVD stage B2. These findings provided new insights into MMVD pathogenesis.


Assuntos
Doenças do Cão , Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Cães , Animais , Valva Mitral/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/veterinária , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/veterinária , Ativação Plaquetária/genética , Ecocardiografia/veterinária
5.
Antioxidants (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136197

RESUMO

Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.

6.
Inflammopharmacology ; 31(6): 2901-2937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947913

RESUMO

Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.


Assuntos
Anti-Inflamatórios , Produtos Biológicos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
7.
Mol Immunol ; 163: 75-85, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748281

RESUMO

miR-495 is aberrantly expressed and affects the progression of inflammation in various diseases. However, the mechanisms of miR-495 in bovine endometritis remain largely unknown. This study investigated the mechanism of miR-495 in lipopolysaccharide (LPS)-induced bovine endometritis and pyroptosis and found that miR-495 inhibits NLRP3 inflammasome activation and inflammatory immune responses in endometritis tissue and cell models. Bovine endometrial epithelial cells (BENDs) were treated with 10 µg/mL LPS to establish a cell inflammatory model. LPS stimulation activated the NLRP3 inflammasome and elevated the expression of proinflammatory factors in BEND cells. In addition, pyroptosis and methylation-dependent inhibition of miR-495 was discovered in LPS-exposed BENDs. Furthermore, overexpression of miR-495 inhibited activation of the NLRP3 inflammasome in vitro and vivo. Collectively, our data demonstrate that miR-495 can attenuate activation of the NLRP3 inflammasome to protect against pyroptosis and bovine endometritis, which provides novel therapeutic targets for bovine endometritis and other inflammatory diseases.


Assuntos
Endometrite , MicroRNAs , Animais , Bovinos , Feminino , Endometrite/veterinária , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
8.
J Proteomics ; 282: 104924, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146676

RESUMO

BACKGROUND: Although it is well known that myxomatous mitral valve disease stage B2 (MMVD stage B2) is predominantly characterized by ECM remodeling of the mitral valve, ECM-related proteomics alterations in plasma from dogs with this disease have yet to be elucidated. OBJECTIVE: To determine whether the differentially expressed protein (DEP) associated with ECM are potential biomarkers of MMVD stage B2. METHODS: Tandem mass tag (TMT) quantitative proteomics analysis was performed to determine the DEPs in plasma samples from a discovery cohort (5 dogs with MMVD stage B2 and 3 healthy controls, poodle). Candidate proteins were identified using DEPs and ECM-related protein network analysis and confirmed by enzyme-linked immunosorbent assay (ELISA) and western blotting in a validation cohort (52 dogs with MMVD stage B2 and 56 healthy controls, multi-breed). The diagnostic potential of a candidate biomarker DEP was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 90 DEPs were identified between healthy and MMVD stage B2 dogs, and of these 90 DEPs, 16 were ECM-related proteins. One ECM-related DEP, serpin family H member 1 (SERPINH1), was significantly overabundance at the protein level in MMVD stage B2 dog plasma, and SERPINH1 expression had an area under the ROC curve (AUC) value of 0.885 (95% CI = 0.814-0.956, P < 0.0001) that allowed discrimination of MMVD stage B2 dogs from healthy dogs. CONCLUSION: Plasma SERPINH1 has good predictive and diagnostic value at dog with MMVD stage B2, suggesting that SERPINH1 may be used as a biomarker for early prediction and diagnosis of stage B2 of MMVD. SIGNIFICANCE: MMVD is the most acquired cardiac disease in dogs. MMVD stage B2, is when the heart valve structure begins to change significantly but there are no clinical symptoms; it is a critical time during which to slow progression of the disease, so timely diagnosis is extremely important. This study suggests that plasma SERPINH1 levels might differentiate MMVD progression in dogs during the early stage. It is also the first study to consider SERPINH1 as a diagnostic biomarker in dogs with stage B2 MMVD. Another advantage is that dogs in the validation cohort were recruited from six breeds to reduce the impacts of breed factors and partly reflect the universality of SERPINH1 for diagnosing MMVD stage B2.


Assuntos
Doenças do Cão , Doenças das Valvas Cardíacas , Cães , Animais , Valva Mitral , Proteômica , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/veterinária , Biomarcadores , Proteínas Sanguíneas , Doenças do Cão/diagnóstico
9.
Cell Commun Signal ; 21(1): 22, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691027

RESUMO

The integrity of the structure and function of the endometrium is essential for the maintenance of fertility. However, the repair mechanisms of uterine injury remain largely unknown. Here, we showed that the disturbance of mechanical cue homeostasis occurs after uterine injury. Applying a multimodal approach, we identified YAP as a sensor of biophysical forces that drives endometrial regeneration. Through protein activation level analysis of the combinatorial space of mechanical force strength and of the presence of particular kinase inhibitors and gene silencing reagents, we demonstrated that mechanical cues related to extracellular matrix rigidity can turn off the Rap1a switch, leading to the inactivation of ARHGAP35and then induced activation of RhoA, which in turn depends on the polymerization of the agonist protein F-actin to activate YAP. Further study confirmed that mechanotransduction significantly accelerates remodeling of the uterus by promoting the proliferation of endometrial stromal cells in vitro and in vivo. These studies provide new insights into the dynamic regulatory mechanisms behind uterine remodeling and the function of mechanotransduction. Video Abstract.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Feminino , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Proteínas de Sinalização YAP , Mecanotransdução Celular/fisiologia , Matriz Extracelular/metabolismo , Útero/metabolismo
10.
J Reprod Immunol ; 154: 103751, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252394

RESUMO

Endometritis is a severe postpartum inflammatory disease that puts cows' reproductive health at risk and causes the dairy industry to suffer significant financial losses. The present study aimed to investigate the regulatory role of miR­26a in LPS­induced bovine endometrial epithelial cells (bEECs) and the implication for endometritis. Here, we found inflammatory cell infiltration and destruction of endometrial structure in cow uterus, and dramatic increase in myeloperoxidase (MPO) activity and upregulation of pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) in endometritis. Meanwhile, miR-26a was down-regulated, but MAP3K8 was increased in the uterine tissue of endometritis. Similarly, the expression of miR-26a was significantly decreased in LPS-stimulated bEECs, while MAP3K8 was risen. In addition, we further verified that MAP3K8 was a target of miR-26a by dual-luciferase reporter assay. Under LPS stress, over-expressing miR-26a markedly decreased MAP3K8 expression levels, along with the reduced expression of inflammatory factors, such as IL-1ß, TNF-α and IL-6, whereas this effect was countered by the inhibition of miR-26a. Furthermore, we demonstrated that miR-26a overexpression prevented the MAPK pathway from being activated by targeting MAP3K8. Then we carried out experiments in LPS-stimulated mice uterus to expound that MAP3K8 was essential in endometritis development, which further confirmed the reliability of the above results. In conclusion, overexpression of miR-26a effectively inhibited the expression of MAP3K8 in LPS-induced bEECs and thereby partially suppressed the activation of MAPK signaling pathway. miR-26a and MAP3K8 may be a promising biomarker and therapeutic target for dairy cow endometritis.


Assuntos
Endometrite , MAP Quinase Quinase Quinases , MicroRNAs , Animais , Bovinos , Feminino , Camundongos , Endometrite/tratamento farmacológico , Endometrite/veterinária , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
11.
Oxid Med Cell Longev ; 2022: 7977433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795861

RESUMO

Mastitis, caused by a variety of pathogenic microorganisms, seriously threatens the safety and economic benefits of the dairy industry. Vitexin, a flavone glucoside found in many plant species, has been widely reported to have antioxidant, anti-inflammatory, antiviral, anticancer, neuroprotective, and cardioprotective effects. However, few studies have explored the effect of vitexin on mastitis. This study is aimed at exploring whether the antioxidant and anti-inflammatory functions of vitexin can improve Staphylococcus aureus-induced mastitis and its possible molecular mechanism. The expression profiles of S. aureus-infected bovine mammary epithelial cells and gland tissues from the GEO data set (GSE94056 and GSE139612) were analyzed and found that DEGs were mainly involved in immune signaling pathways, apoptosis, and ER stress through GO and KEGG enrichment. Vitexin blocked the production of ROS and increased the activity of antioxidant enzymes (SOD, GSH-PX, and CAT) via activation of PPARγ in vivo and in vitro. In addition, vitexin reduced the production of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and inhibited apoptosis in MAC-T cells and mouse mammary tissues infected with Staphylococcus aureus. Moreover, vitexin decreased the expression of PDI, Ero1-Lα, p-IRE1α, PERK, p-eIF2α, and CHOP protein but increased BiP in both mammary gland cells and tissues challenged by S. aureus. Western blot results also found that the phosphorylation levels of JNK, ERK, p38, and p65 were reduced in vitexin-treated tissues and cells. Vitexin inhibited the production of ROS through promoting PPARγ, increased the activity of antioxidant enzymes, and reduced inflammatory cytokines and apoptosis by alleviating ER stress and inactivation MAPKs and NF-κB signaling pathway. Vitexin maybe have great potential to be a preventive and therapeutic agent for mastitis.


Assuntos
Mastite , Infecções Estafilocócicas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apigenina , Bovinos , Citocinas/metabolismo , Endorribonucleases , Feminino , Humanos , Mastite/tratamento farmacológico , Mastite/patologia , Camundongos , NF-kappa B/metabolismo , PPAR gama , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo
12.
Front Vet Sci ; 9: 879805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692296

RESUMO

Pullorum is one of the most serious diseases that endanger the chicken industry. With the advent of the era of anti-antibiotics in feed, the replacement of antibiotics by probiotics has become the focus and hotspot of related research. In this study, hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to observe the structural changes of intestinal mucosa in chicks infected with Salmonella pullorum, and to analyze TNF-α, IL-10, IFN-γ, proliferating cell nuclear antigen (PCNA), and secreted immunoglobulin A (sIgA) levels. The results showed that the intestinal villus height, villus height to crypt depth ratio (V/C), and muscle layer thickness of duodenum, jejunum and cecum in the JYBR-190 group were significantly higher than those of the infection group and antibiotic group. Furthermore, the levels of PCNA, sIgA and IL-10 in JYBR-190 group were significantly increased, whereas the expression of TNF-α and IFN-γ was significantly decreased. Taken together, Bifidobacterium lactis JYBR-190 has a protective effect on intestinal mucosal damage in chicks infected with Salmonella pullorum.

13.
Cell Death Discov ; 8(1): 286, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690609

RESUMO

2-Deoxyglucose (2-DG) can be used in antitumour research by inhibiting glycolysis and promoting the endoplasmic reticulum stress (ERS) pathway, but its clinical application is restricted due to dose-limiting side effects and survival chance for cancer cells by protective autophagy. Therefore, our research explored whether the combination of hydroxychloroquine (HCQ), an FDA-approved autophagy inhibiting drug, and 2-DG is a promising therapeutic strategy. Here, we report that HCQ combined with 2-DG can further inhibit the viability and migration and induce apoptosis of breast tumour cells compared with other individual drugs. The combination of 2-DG and HCQ can significantly reduce transplanted tumour size and tumour cell metastasis of the lung and liver in vivo. At the cellular level, HCQ suppressed autolysosome formation and terminated the autophagy process induced by 2-DG-mediated ERS, resulting in the continuous accumulation of misfolded proteins in the endoplasmic reticulum, which generated sustained ERS through the PERK-eIF2α-ATF-4-CHOP axis and triggered the transformation from a survival process to cell death. Our research reinforced the research interest of metabolic disruptors in triple-negative breast cancer and emphasized the potential of the combination of 2-DG and HCQ as an anticancerous treatment.

14.
Sci Rep ; 12(1): 9410, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672341

RESUMO

Endometritis is the failure of embryo implantation and an important cause of infertility in dairy cows. IFN-τ is a type I interferon unique to ruminants. In regulating the process of inflammatory response, IFN-τ can be expressed through MicroRNAs (miRNAs) to regulate the process of inflammation. However, IFN-τ regulates lipopolysaccharide (LPS)-induced inflammatory injury of bEECs through the highly conserved miR-26a in mammals, and the mechanism remains unclear. Bovine endometrial epithelial cells (bEECs)were isolated and cultured to establish an inflammatory injury model. RT-qPCR and ELISA were used to detect the secretion of inflammatory factors. Dual-luciferase assays and target gene silencing assays determine the regulatory role of miRNAs. The target protein was detected by immunofluorescence and western blotting. This study showed that the expression of miR-26a was significantly down-regulated in mouse endometrium inflammatory injury tissue and LPS stimulated bEECs; and IFN-τ reversed the expression of miR-26a. The study also showed that the overexpression of miR-26a significantly inhibited the secretion of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α. In addition, studies have shown that miR-26a inhibits its translation by targeting PTEN 3'-UTR, which in turn activates the Phosphatidylinositide 3-kinases/protein kinase B (PI3K/AKT) pathway, so that nuclear factor kappa-B (NF-κB) signaling is inhibited. In summary, the results of this study further confirm that IFN-τ as an anti-inflammatory agent can up-regulate the expression of miR-26a and target the PTEN gene to inhibit the inflammatory damage of bEECs.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Bovinos , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Mol Immunol ; 147: 10-20, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489290

RESUMO

Bovine endometritis is a serious hazard to husbandry, so it is necessary to know the mechanism of endometritis. In past research, we found microRNAs (miRNAs) might be regulators in inflammation, including miR-196b, but the mechanism of miR-196b in bovine endometritis was unknown. Therefore, we tended to find out what role miR-196b would play in bovine endometritis. As a result, we found miR-196b up-regulated in the endometritis tissue and the high concentration lipopolysaccharide (LPS)-stimulated bovine endometrial epithelial (BEND) cell line, but down-regulated in the low concentration. And, over-expression of miR-196b inhibited the expressions of some inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and neuroblastoma RAS (NRAS)/nuclear factor (NF)-κB pathway proteins. Furthermore, the dual-luciferase reporter assay and NRAS knockdown confirmed that miR-196b inhibited activation of the downstream pathway by directly targeting NRAS. In conclusion, we provide evidence that miR-196b alleviates LPS-induced inflammatory injury by targeting NRAS.


Assuntos
Endometrite , MicroRNAs , Neuroblastoma , Animais , Bovinos , Células Epiteliais/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Transdução de Sinais/genética
16.
J Reprod Immunol ; 150: 103471, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032930

RESUMO

Endometritis is inflammation of endometrium due to various factors and is a common cause of infertility. Several remedies used for endometritis like antibiotics, hormones, and herbs. Studies confirm that microRNAs play a significant role in various inflammatory diseases. However, the role of miR-424-5p in endometritis is not clear. In our study, histopathology, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence, ELISA, and dual-luciferase reporter assay were used to elucidate the effect of miR-424-5p in lipopolysaccharide (LPS)-primed inflammatory response in bovine endometrial epithelial cells (BEECs) and clarify the potential mechanism. Our results revealed that miR-424-5p mimics noticeably decrease the production of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), while miR-424-5p inhibitors have inverse effects in BEECs. Moreover, overexpression of miR-424-5p on BEECs cells also suppressed NF-κB p65 activation. Afterwards, we verified that miR-424-5p inhibited Interleukin 1 Receptor Associated Kinase 2 (IRAK2) expression by binding to the 3'-UTR of IRAK2 mRNA. Further, co-transfection of miR-424-5p inhibitors and siRNA-IRAK2 revealed that negative regulation of miR-424-5p on LPS-induced inflammatory response in BEECs was mediated by IRAK2.Mutually, miR-424-5p pharmacologic stabilization represents an entirely unique medical aid for cow endometritis and other inflammation-related diseases.


Assuntos
Endometrite , MicroRNAs , Animais , Bovinos , Endometrite/patologia , Endométrio/patologia , Células Epiteliais/patologia , Feminino , Inflamação/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
17.
Reprod Biol ; 22(1): 100606, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066371

RESUMO

Endometritis is an inflammatory disease that is caused by various pathogenic organisms. Andrograpanin is a compound of Andrographis paniculata, which has an important role in many inflammatory diseases, but the molecular mechanism of andrograpanin to combat inflammation is unclear. This study shows the anti-inflammatory effect of andrograpanin on Lipopolysaccharides (LPS) stimulated bovine endometrial epithelial cells (bEECs) and LPS-induced mouse model. We investigated the cytotoxic effect of bEECs by using CCK-8 analysis. Quantification of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) protein levels and mRNA was carried out using RT-qPCR and ELISA, respectively. The protein expressions of p65 and IκBα were assessed by western blot and immunofluorescence to check the inhibition of p65 translocation into the nucleus. The treatment effect of andrograpanin on mouse uterine tissues was determined by histopathology. in vivo, curative effect experiments showed that andrograpanin significantly reduced the endometrial injury in a mouse model. Our studies first confirmed that andrograpanin had no cytotoxic effect at 7.5,15 and 30 µg/mL concentration on bEECs. Following, Andrograpanin significantly reduced the mRNA and protein level of IL-1ß, IL-6, and TNF-α both in vivo and in vitro. Finally, Andrograpanin inhibited the IκBα degradation and p65 phosphorylation in LPS-stimulated bEECs and LPS-induced endometrial injury. Our results showed that andrograpanin might have therapeutic effects against endometritis.


Assuntos
Endometrite , NF-kappa B , Animais , Bovinos , Citocinas/genética , Citocinas/metabolismo , Diterpenos , Endometrite/induzido quimicamente , Endometrite/prevenção & controle , Feminino , Inflamação , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
Life Sci ; 288: 119657, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048808

RESUMO

AIMS: Patients with acute kidney injury (AKI) have higher mortality, and sepsis is among its main causes. MicroRNAs (miRNAs) are essential for regulating kidney function and could have curative potential. This study explored the possibility to treat AKI with miR-125a-5p and reveal the possible mechanism. MATERIALS AND METHODS: LPS-induced mouse model and LPS-induced RAW264.7 cell model of AKI were established and treated with miR-125a-5p mimics or inhibitors. Serum creatinine and blood urea were measured to evaluate kidney function. The pathological changes of kidney tissues were detected by H&E and PAS staining technique, and the infiltration of macrophages were observed by immunohistochemistry. RAW264.7 cell viability, TRAF6 and cytokines expressions under LPS stimulation were measured. The role and therapeutic potential of miR-125a-5p were verified in vivo and in vitro after given miR-125a-5p mimics or inhibitors. KEY FINDINGS: LPS-induced mice had increasing serum creatinine and urea, and evident pathological changes, including severe tubular dilatation and macrophages infiltration. TRAF6 expression in the kidney was significantly higher, while miR-125a-5p expression was suppressed. MiR-125a-5p targeted TRAF6, and its overexpression deactivated NF-κB signaling pathway, reducing downstream TNF-α, IL-1ß and IL-6 expressions. MiR-125a-5p mimics rescued LPS-induced kidney damage and suppressed pro-inflammatory cytokines expression through inhibiting TRAF6/NF-κB axis. SIGNIFICANCE: We highlighted that miR-125a-5p could inhibit LPS-induced acute inflammation in the kidney through targeting TRAF6/NF-κB axis. These results might contribute to the development of molecular therapy in AKI.


Assuntos
Injúria Renal Aguda/patologia , Regulação da Expressão Gênica , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
19.
Biofactors ; 48(1): 148-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34855261

RESUMO

Although the specific expression of long noncoding RNA (lncRNA) in mastitis tissue has been reported, few studies have involved the differential expression of lncRNA in mastitis exosomes (Exo) and its mechanism and function. We screened an lncRNA associated with FAS translational regulation (lnc-AFTR) through exosomal RNA sequencing, and clarified its function and molecular mechanism. Lnc-AFTR is markedly downregulated in Staphylococcus aureus-Exo and S. aureus-induced MAC-T cell as well as mastitis tissue. Overexpression of lnc-AFTR exosomes (oe-AFTR-Exo) significantly improves cell damage induced by S. aureus, including inhibiting apoptosis, promoting proliferation, and increasing the production of pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-1ß [IL-1ß]). Oe-AFTR-Exo also suppressed the activation of Caspase-8, Caspase-3, and JNK. Dual-luciferase report analysis confirmed that lnc-AFTR interacts with FAS mRNA directly to hinder translation process, but does not degrade FAS mRNA. Overexpression of lnc-AFTR in MAC-T cells obviously reduced S. aureus-induced apoptosis and inflammation. Knockdown of lnc-AFTR significantly increased FAS and promoted the activation of Caspase-8, Caspase-3, and JNK caused by S. aureus. In summary, these results revealed the mechanism by which lnc-AFTR directly bound FAS mRNA to prevent translation, and confirmed that the exosomal lnc-AFTR exerted anti-inflammatory and anti-apoptotic effects by inhibiting the activation of TNF signaling pathway and mitogen-activated protein kinases (MAPK) signaling pathway.


Assuntos
Exossomos , Mastite , RNA Longo não Codificante , Infecções Estafilocócicas , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Mastite/genética , Mastite/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética
20.
Inflamm Res ; 70(10-12): 1217-1231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554275

RESUMO

OBJECTIVE: Mycoplasma gallisepticum (MG), a notorious avian pathogen, leads to considerable economic losses in the poultry industry. MG infection is characterized by severe, uncontrollable inflammation and host DNA damage. Micro ribonucleic acids (miRNAs) have emerged as important regulators in microbial pathogenesis. However, the role of miRNAs in MG infection is poorly characterized. In this study, we validated the functional roles of gga-miR-142-3p. METHODS: The relative expression of gga-miR-142-3p in the lungs of the MG-infected chicken embryos and the MG-infected chicken embryonic fibroblast cell line (DF-1) was determined by reverse transcription quantitative real-time PCR analysis. Bioinformatics database was used to analysis the target gene of gga-miR-142-3p. The luciferase reporter assay as well as gene expression analysis were conducted to validate the target gene. To further explore the biological functions of gga-miR-142-3p upon MG infection, the cell proliferation was quantified using Cell Counting Kit-8 (CCK-8). Meanwhile, cell cycle analysis and apoptosis were measured using a flow cytometer. RESULTS: gga-miR-142-3p was significantly upregulated in both MG-infected chicken-embryo lungs and the DF-1 cells. gga-miR-142-3p over expression significantly downregulated the expression of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6 and tumor necrosis factor alpha after MG infection. Meanwhile, gga-miR-142-3p enhanced the host defense against MG infection by facilitating cell proliferation, promoting cell progression and inhibiting cell apoptosis. Interestingly, TAB2 knockdown groups show similar results, whereas, TAB2 over-expression groups and gga-miR-142-3p inhibitor groups had thoroughly opposite results. The expression of p-p65 in nuclear factor kappa B (NF-κB) and p-p38 in the mitogen-activated protein kinase (MAPK) pathway was decreased when gga-miR-142-3p was over-expressed. CONCLUSION: Upon MG infection, upregulation of gga-miR-142-3p alleviates inflammation by negatively regulating the signaling pathways of NF-κB and MAPKs by targeting TAB2 and facilitates cell proliferation by inhibiting cell apoptosis and promoting cell cycle progression to defend against MG infection.


Assuntos
MicroRNAs , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologia , Mycoplasma gallisepticum , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Apoptose , Ciclo Celular , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Citocinas/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA