Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743874

RESUMO

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

2.
Chem Sci ; 15(10): 3721-3729, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455009

RESUMO

Overcoming thermal quenching is generally essential for the practical application of luminescent materials. It has been recently found that frameworks with negative thermal expansion (NTE) could be a promising candidate to engineer unconventional luminescence thermal enhancement. However, the mechanism through which luminescence thermal enhancement can be well tuned remains an open issue. In this work, enabled by altering ligands in a series of UiO-66 derived Eu-based metal-organic frameworks, it was revealed that the changes in the thermal expansion are closely related to luminescence thermal enhancement. The NTE of the aromatic ring part favors luminescence thermal enhancement, while contraction of the carboxylic acid part plays the opposite role. Modulation of functional groups in ligands can change the thermal vibration of aromatic rings and then achieve luminescence thermal enhancement in a wide temperature window. Our findings pave the way to manipulate the NTE and luminescence thermal enhancement based on ligand engineering.

3.
Nat Commun ; 15(1): 2252, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480744

RESUMO

Zero thermal expansion (ZTE) alloys with high mechanical response are crucial for their practical usage. Yet, unifying the ZTE behavior and mechanical response in one material is a grand obstacle, especially in multicomponent ZTE alloys. Herein, we report a near isotropic zero thermal expansion (αl = 1.10 × 10-6 K-1, 260-310 K) in the natural heterogeneous LaFe54Co3.5Si3.35 alloy, which exhibits a super-high toughness of 277.8 ± 14.7 J cm-3. Chemical partition, in the dual-phase structure, assumes the role of not only modulating thermal expansion through magnetic interaction but also enhancing mechanical properties via interface bonding. The comprehensive analysis reveals that the hierarchically synergistic enhancement among lattice, phase interface, and heterogeneous structure is significant for strong toughness. Our findings pave the way to tailor thermal expansion and obtain prominent mechanical properties in multicomponent alloys, which is essential to ultra-stable functional materials.

4.
J Am Chem Soc ; 145(31): 17096-17102, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490643

RESUMO

A cubic metal exhibiting zero thermal expansion (ZTE) over a wide temperature window demonstrates significant applications in a broad range of advanced technologies but is extremely rare in nature. Here, enabled by high-temperature synthesis, we realize tunable thermal expansion via magnetic doping in the class of kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe2. A remarkably isotropic ZTE is achieved with a negligible coefficient of thermal expansion (+0.47 × 10-6 K-1) from 4 to 425 K, almost wider than most ZTE in metals available. A combined in situ magnetization, neutron powder diffraction, and hyperfine Mössbauer spectrum analysis reveals that interplanar ferromagnetic ordering contributes to a large magnetic compensation for normal lattice contraction upon cooling. Trace Fe-doping introduces extra magnetic exchange interactions that distinctly enhance the ferromagnetism and magnetic ordering temperature, thus engendering such an ultrawide ZTE. This work presents a promising ZTE in kagome metallic materials.

5.
Dalton Trans ; 52(25): 8530-8535, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306008

RESUMO

Metallic phase (1T) MoS2 has been regarded as an ideal catalytic material for the hydrogen evolution reaction (HER) due to its high active site density and favorable electrical conductivity. However, the preparation of 1T-phase MoS2 samples requires tough reaction conditions and 1T-MoS2 has poor stability under alkaline conditions. In this work, 1T-MoS2/NiS heterostructure catalysts grown in situ on carbon cloth were prepared by a simple one-step hydrothermal method. The obtained MoS2/NiS/CC combines the advantages of high active site density and a self-supporting structure, achieving stable 77% metal phase (1T) MoS2. The combination of NiS and 1T-MoS2 enhances the intrinsic activity of MoS2 while the electrical conductivity is improved. These advantages enable the 1T-MoS2/NiS/CC electrocatalyst to have a low overpotential of 89 mV (@10 mA cm-2) and a small Tafel slope of 75 mV dec-1 under alkaline conditions and provide a synthetic strategy of stable 1T-MoS2-based electrocatalysts for the HER by a heterogeneous structure.

6.
Nat Commun ; 14(1): 3135, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253768

RESUMO

Rapid progress in modern technologies demands zero thermal expansion (ZTE) materials with multi-property profiles to withstand harsh service conditions. Thus far, the majority of documented ZTE materials have shortcomings in different aspects that limit their practical utilization. Here, we report on a superior isotropic ZTE alloy with collective properties regarding wide operating temperature windows, high strength-stiffness, and cyclic thermal stability. A boron-migration-mediated solid-state reaction (BMSR) constructs a salient "plum pudding" structure in a dual-phase Er-Fe-B alloy, where the precursor ErFe10 phase reacts with the migrated boron and transforms into the target Er2Fe14B (pudding) and α-Fe phases (plum). The formation of such microstructure helps to eliminate apparent crystallographic texture, tailor and form isotropic ZTE, and simultaneously enhance the strength and toughness of the alloy. These findings suggest a promising design paradigm for comprehensive performance ZTE alloys.

7.
Nano Lett ; 22(23): 9405-9410, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36410727

RESUMO

The insight into the three-dimensional configuration of ferroelectric ordering in ferroelectric nanomaterials is motivated by the application of the development of functional nanodevices and the structural designing. However, the atomic deciphering of the spatial distribution of ordered structure remains challenging for the limitation of dimension and probing techniques. In this paper, a neutron pair distribution function (nPDF) was utilized to analyze the spontaneous polarization distribution of zero-dimensional PbTiO3 nanoparticles in three dimensions, via the application of reverse Monte Carlo (RMC) modeling. The comprehensive identification with transmission electron microscopy verified the linear characteristics of polarization along the c-axis in the main body, while electric polarization distribution on the surface was enhanced abnormally. In addition, the correlation of dipole vectors extending to three unit cells below the surface is retained. This work shows an application of the micro/macroscale information to effectively decode the polarization structure of nanoferroelectrics, providing new views of designing nanoferroelectric devices.

8.
Nutrients ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235637

RESUMO

Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.


Assuntos
Cartilagem Articular , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Regeneração
9.
J Am Chem Soc ; 144(44): 20298-20305, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36300893

RESUMO

The revelation of the atomic 3D structure of sub-5 nm bimetal nanocatalysts challenges the limitations of conventional methods. Notably, the identification of the cooperative relationship between the active sites and nearby coordination environment during catalytic reactions depends on the stereo distribution of local phases and chemical composition within a short range. As a model nanocatalyst in our investigation, we studied the ordered PtFe bimetals in hydrogen evolution reactions (HER). By combining pair distribution functions with reverse Monte Carlo, local-range phase symmetry, chemical composition, and atom distribution were determined. The segregation of local phase segments as disordered Pt-rich A1 and Pt3Fe L12 phases can be attributed to the marked improvement of HER activity and stability in Pt56Fe44. Following the etching of the outermost-surface Fe, the remaining disordered segregation offered a large number of active Pt sites for discharge and electrochemical desorption reactions. It resulted in local-bonding Pt pairs that made it easier for adsorbed hydrogen atoms to recombine. The current research will provide structural insight into the local range for bimetal nanocatalysts and be valuable for the creation of new, low-cost nanocatalysts.

10.
Inorg Chem ; 61(26): 10006-10014, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723523

RESUMO

Supported atomic dispersion metals are of great interest, and the interfacial effect between isolated metal atoms and supports is crucial in heterogeneous catalysis. Herein, the behavior of single-atom Cu catalysts dispersed on CeO2 (100), (110), and (111) surfaces has been studied by DFT + U calculations. The interactions between ceria crystal planes and isolated Cu atoms together with their corresponding catalytic activities for CO oxidation are investigated. The CeO2 (100) and (111) surfaces can stabilize active Cu+ species, while Cu exists as Cu2+ on the (110) surface. Cu+ is certified as the most active site for CO adsorption, which can promote the formation of the reaction intermediates and reduce reaction energy barriers. For the CeO2 (100) surface, the interaction between CO and Cu is weak and the CO adsorbate is more likely to activate the subsurface oxygen. The catalytic performance is closely related to the binding strength of CO to the active Cu single atoms on the different subsurfaces. These results bring a significant insight into the rational design of single metal atoms on ceria and other reducible oxides.

11.
Adv Mater ; 34(34): e2109592, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772730

RESUMO

Zero thermal expansion (ZTE) alloys as dimensionally stable materials are usually challenged by harsh environmental erosion, since ZTE and corrosion resistance are generally mutually exclusive. Here, a high-performance alloy, Zr0.8 Ta0.2 Fe1.7 Co0.3 , is reported, that shows isotropic ZTE behavior (αl  = 0.21(2) × 10-6 K-1 ) in a wide temperature range of 5-360 K, high corrosion resistance in a seawater-like solution compared with classic Invar and stainless Invar, and excellent cyclic thermal and structural stabilities. Such stabilities are attributed to the cubic symmetry, the controllable magnetic order, and the spontaneously formed passive film with Ta and Zr chemical modifications. The results are evidenced by X-ray/neutron diffraction, microscopy, spectroscopy, and electrochemistry investigations. Such multiple stabilities have the potential to broaden the robust applications of ZTE alloys, especially in marine services.

12.
Inorg Chem ; 61(23): 8634-8638, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35652917

RESUMO

Two-dimensional negative thermal expansion (NTE) is achieved in a tetragonal oxalate-based metal-organic framework (MOF), CdZrSr(C2O4)4, within a temperature range from 123 to 398 K [space group I4̅m2, αa = -2.4(7) M K-1, αc = 11.3(3) M K-1, and αV = 6.4(1) M K-1]. By combining variable-temperature X-ray diffraction, a high-resolution synchrotron X-ray pair distribution function, and thermogravimetry-differential scanning calorimetry, we shows that NTE within the ab plane derives from the oriented rotation of an oxalate ligand in zigzag chains (-CdO8-ox-ZrO8-ox-)∞. That is simplified to the Zr atom rotating with an unchanged Zr···Cd distance as the radius, which also gives rise to the deformation of a hingelike connection along the c axis and results in its positive thermal expansion. By virtue of the facile and low-cost oxalate ligand, the present NTE MOF may show application prospects in the future.

13.
PLoS One ; 17(4): e0260565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452465

RESUMO

TLR7 and TLR8 are key members of the Toll-like receptor family, playing crucial roles in the signaling pathways of innate immunity, and thus become attractive therapeutic targets of many diseases including infections and cancer. Although TLR7 and TLR8 show a high degree of sequence homology, their biological response to small molecule binding is very different. Aiming to understand the mechanism of selective profiles of small molecule modulators against TLR7 and TLR8, we carried out molecular dynamic simulations on three imidazoquinoline derivatives bound to the receptors separately. They are Resiquimod (R), Hybrid-2 (H), and Gardiquimod (G), selective agonists of TLR7 and TLR8. Our MD trajectories indicated that in the complex of TLR7-R and TLR7-G, the two chains forming the TLR7 dimer tended to remain "open" conformation, while the rest systems maintained in the closed format. The agonists R, H, and G developed conformational deviation mainly on the aliphatic tail. Furthermore, we attempted to quantify the selectivity between TLR7 and TLR8 by binding free energies via MM-GBSA method. It showed that the three selected modulators were more favorable for TLR7 than TLR8, and the ranking from the strongest to the weakest was H, R and G, aligning well with experimental data. In the TLR7, the flexible and hydrophobic aliphatic side chain of H has stronger van der Waals interactions with V381 and F351 but only pick up interaction with one amino acid residue i.e. Y353 of TLR8. Unsurprisingly, the positively charged side chain of G has less favorable interaction with I585 of TLR7 and V573 of TLR8 explaining G is weak agonist of both TLR7 and TLR8. All three imidazoquinoline derivatives can form stable hydrogen bonds with D555 of TLR7 and the corresponding D543 of TLR8. In brief, the set of total 400ns MD studies sheds light on the potential selectivity mechanisms of agonists towards TLR7 and TLR8, indicating the van der Waals interaction as the driving force for the agonists binding, thus provides us insights for designing more potent and selective modulators to cooperate with the hydrophobic nature of the binding pocket.


Assuntos
Receptor 7 Toll-Like , Receptor 8 Toll-Like , Simulação de Dinâmica Molecular , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like
14.
Front Pharmacol ; 12: 772678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887766

RESUMO

Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.

15.
Nat Commun ; 12(1): 4701, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349119

RESUMO

Zero thermal expansion (ZTE) alloys possess unique dimensional stability, high thermal and electrical conductivities. Their practical application under heat and stress is however limited by their inherent brittleness because ZTE and plasticity are generally exclusive in a single-phase material. Besides, the performance of ZTE alloys is highly sensitive to change of compositions, so conventional synthesis methods such as alloying or the design of multiphase to improve its thermal and mechanical properties are usually inapplicable. In this study, by adopting a one-step eutectic reaction method, we overcome this challenge. A natural dual-phase composite with ZTE and plasticity was synthesized by melting 4 atom% holmium with pure iron. The dual-phase alloy shows moderate plasticity and strength, axial zero thermal expansion, and stable thermal cycling performance as well as low cost. By using synchrotron X-ray diffraction, in-situ neutron diffraction and microscopy, the critical mechanism of dual-phase synergy on both thermal expansion regulation and mechanical property enhancement is revealed. These results demonstrate that eutectic reaction is likely to be a universal and effective method for the design of high-performance intermetallic-compound-based ZTE alloys.

16.
Phys Rev Lett ; 127(5): 055501, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397222

RESUMO

Super Invar (SIV), i.e., zero thermal expansion of metallic materials underpinned by magnetic ordering, is of great practical merit for a wide range of high precision engineering. However, the relatively narrow temperature window of SIV in most materials restricts its potential applications in many critical fields. Here, we demonstrate the controlled design of thermal expansion in a family of R_{2}(Fe,Co)_{17} materials (R=rare Earth). We find that adjusting the Fe-Co content tunes the thermal expansion behavior and its optimization leads to a record-wide SIV with good cyclic stability from 3-461 K, almost twice the range of currently known SIV. In situ neutron diffraction, Mössbauer spectra and first-principles calculations reveal the 3d bonding state transition of the Fe-sublattice favors extra lattice stress upon magnetic ordering. On the other hand, Co content induces a dramatic enhancement of the internal molecular field, which can be manipulated to achieve "ultrawide" SIV over broad temperature, composition and magnetic field windows. These findings pave the way for exploiting thermal-expansion-control engineering and related functional materials.

17.
Inorg Chem ; 60(14): 10095-10099, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236180

RESUMO

Zero thermal expansion (ZTE) is an intriguing phenomenon by virtue of its peculiar lack of expansion and contraction with temperature. The achievement of ZTE in a metallic material is a desired but challenging task. Here we report the ZTE behavior of a single-phase metallic VB2 compound, stacking with the V and B atomic layers along the c direction (αV = 2.18 × 10-6 K-1, 5-150 K). Neutron powder diffraction demonstrates that the ZTE behavior is entangled in the direct blocking of the lattice expansion along all crystallographic directions with temperature. X-ray photoelectron spectroscopy and density functional theory calculations indicate that strong covalent binding adheres the nearest-neighbor B-B and V-B pairs, which is proposed to control the ZTE within both the basal plane and the c direction. An intimate correlation is revealed between the covalent binding and the lattice parameters. Our work indicates the opportunity to design metallic ZTE with strong chemical binding in the future.

18.
J Am Chem Soc ; 143(17): 6491-6497, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900066

RESUMO

Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 µC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.

19.
PLoS One ; 15(12): e0243313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296400

RESUMO

G Protein-Coupled Receptors (GPCRs) mediate intracellular signaling in response to extracellular ligand binding and are the target of one-third of approved drugs. Ligand binding modulates the GPCR molecular free energy landscape by preferentially stabilizing active or inactive conformations that dictate intracellular protein recruitment and downstream signaling. We perform enhanced sampling molecular dynamics simulations to recover the free energy surfaces of a thermostable mutant of the GPCR serotonin receptor 5-HT2B in the unliganded form and bound to a lysergic acid diethylamide (LSD) agonist and lisuride antagonist. LSD binding imparts a ∼110 kJ/mol driving force for conformational rearrangement into an active state. The lisuride-bound form is structurally similar to the apo form and only ∼24 kJ/mol more stable. This work quantifies ligand-induced conformational specificity and functional selectivity of 5-HT2B and presents a platform for high-throughput virtual screening of ligands and rational engineering of the ligand-bound molecular free energy landscape.


Assuntos
Dietilamida do Ácido Lisérgico/química , Simulação de Dinâmica Molecular , Receptor 5-HT2B de Serotonina/química , Humanos , Termodinâmica
20.
Adv Mater ; 32(48): e2002968, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118254

RESUMO

Ferroelectric materials usually undergo decay with particle size decreasing into the nanoscale. At the critical value, the crystal structure undergoes a transition from the ferroelectric to paraelectric phase and the ferroelectricity vanishes. It is a big issue to sufficiently maintain strong ferroelectricity at the nanoscale. Herein, it is reported that synthesized 0D freestanding PbTiO3 nanoparticles (NPs) present negative pressure along the c axis (Δc/cbulk × 100% = -2.406), inducing large spontaneous polarization PS (71.2 µC cm-2 in 12 nm). Further local structural studies by atomic pair distribution functions and extended X-ray absorption fine structure indicate the structural evolution of nanosized PbTiO3 . High-angle annular dark-field STEM images reveal the existence of preponderant PbO-terminations on the surface of the PbTiO3 NPs. Ab initio calculation reveals the enhanced hybridization between Pb and O ions, which gives rise to the negative pressure and tensile stress to stabilize the high tetragonality and large polarization. The present work demonstrates an untraditional route to enhance the ferroelectricity and related properties in functional nanostructured materials, being of significance to nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA