Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(38): e2208230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37162379

RESUMO

Nanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported. The process features a low-shrinking (<10%) "green-to-brown" transformation, making a near-geometric replica of the 3D design to produce a "brown" part with full nanomaterials to allow further matrix infill. This demonstration includes additively manufactured carbon nanocomposites containing carbon nanotubes (CNTs) and thermoset epoxy, leading to multiscale CNTs tailorability, performance improvement, and 3D complex geometry feasibility. The process can produce nanomaterial-assembled architectures with 3D geometry and multiscale features and can incorporate a wide range of matrix materials, such as polymers, metals, and ceramics, to fabricate nanocomposites for new device structures and applications.

2.
Nano Lett ; 22(23): 9462-9469, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36399137

RESUMO

As the world increasingly swaps fossil fuels, significant advances in lithium-ion batteries have occurred over the past decade. Though demand for increased energy density with mechanical stability continues to be strong, attempts to use traditional ink-casting to increase electrode thickness or geometric complexity have had limited success. Here, we combined a nanomaterial orientation with 3D printing and developed a dry electrode processing route, structured electrode additive manufacturing (SEAM), to rapidly fabricate thick electrodes with an out-of-plane aligned architecture with low tortuosity and mechanical robustness. SEAM uses a shear flow of molten feedstock to control the orientation of the anisotropic materials across nano to macro scales, favoring Li-ion transport and insertion. These structured electrodes with 1 mm thickness have more than twice the specific capacity at 1 C compared to slurry-cast electrodes and have higher mechanical properties (compressive strength of 0.84 MPa and modulus of 5 MPa) than other reported 3D-printed electrodes.

3.
Nano Lett ; 21(16): 7070-7078, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34100613

RESUMO

Using a three-dimensional (3D) Li-ion conducting ceramic network, such as Li7La3Zr2O12 (LLZO) garnet-type oxide conductor, has proved to be a promising strategy to form continuous Li ion transfer paths in a polymer-based composite. However, the 3D network produced by brittle ceramic conductor nanofibers fails to provide sufficient mechanical adaptability. In this manuscript, we reported a new 3D ion-conducting network, which is synthesized from highly loaded LLZO nanoparticles reinforced conducting polymer nanofibers, by creating a lightweight continuous and interconnected LLZO-enhanced 3D network to outperform conducting heavy and brittle ceramic nanofibers to offer a new design principle of composite electrolyte membrane featuring all-round properties in mechanical robustness, structural flexibility, high ionic conductivity, lightweight, and high surface area. This composite-nanofiber design overcomes the issues of using ceramic-only nanoparticles, nanowires, or nanofibers in polymer composite electrolyte, and our work can be considered as a new generation of composite electrolyte membrane in composite electrolyte development.

4.
Mol Plant Microbe Interact ; 32(12): 1581-1597, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31657672

RESUMO

Vascular wilt bacteria such as Pantoea stewartii, the causal agent of Stewart's bacterial wilt of maize (SW), are destructive pathogens that are difficult to control. These bacteria colonize the xylem, where they form biofilms that block sap flow leading to characteristic wilting symptoms. Heritable forms of SW resistance exist and are used in maize breeding programs but the underlying genes and mechanisms are mostly unknown. Here, we show that seedlings of maize inbred lines with pan1 mutations are highly resistant to SW. However, current evidence suggests that other genes introgressed along with pan1 are responsible for resistance. Genomic analyses of pan1 lines were used to identify candidate resistance genes. In-depth comparison of P. stewartii interaction with susceptible and resistant maize lines revealed an enhanced vascular defense response in pan1 lines characterized by accumulation of electron-dense materials in xylem conduits visible by electron microscopy. We propose that this vascular defense response restricts P. stewartii spread through the vasculature, reducing both systemic bacterial colonization of the xylem network and consequent wilting. Though apparently unrelated to the resistance phenotype of pan1 lines, we also demonstrate that the effector WtsE is essential for P. stewartii xylem dissemination, show evidence for a nutritional immunity response to P. stewartii that alters xylem sap composition, and present the first analysis of maize transcriptional responses to P. stewartii infection.


Assuntos
Resistência à Doença , Pantoea , Zea mays , Resistência à Doença/genética , Genoma de Planta/genética , Pantoea/fisiologia , Plântula/microbiologia , Xilema/microbiologia , Zea mays/genética , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA