Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 18(4)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34320485

RESUMO

Objective. Human movement is a complex process requiring information transmission in inter-cortical, cortico-muscular and inter-muscular networks. Though motor deficits after stroke are associated with impaired networks in the cortico-motor system, the mechanisms underlying these networks are to date not fully understood. The purpose of this study is to investigate the changes in information transmission of the inter-cortical, cortico-muscular and inter-muscular networks after stroke and the effect of myoelectric-controlled interface (MCI) dimensionality on such information transmission in each network.Approach. Fifteen healthy control subjects and 11 post-stroke patients were recruited to perform elbow tracking tasks within different dimensional MCIs in this study. Their electromyography (EMG) and functional near-infrared spectroscopy (fNIRS) signals were recorded simultaneously. Transfer entropy was used to analyse the functional connection that represented the information transmission in each network based on the fNIRS and EMG signals.Main results.The results found that post-stroke patients showed the increased inter-cortical connection versus healthy control subjects, which might be attributed to cortical reorganisation to compensate for motor deficits. Compared to healthy control subjects, a lower strength cortico-muscular connection was found in post-stroke patients due to the reduction of information transmission following a stroke. Moreover, the increased MCI dimensionality strengthened inter-cortical, cortico-muscular and inter-muscular connections because of higher visual information processing demands.Significance. These findings not only provide a comprehensive overview to evaluate changes in the cortico-motor system due to stroke, but also suggest that increased MCI dimensionality may serve as a useful rehabilitation tool for boosting information transmission in the cortico-motor system of post-stroke patients.


Assuntos
Contração Isométrica , Acidente Vascular Cerebral , Cotovelo , Eletromiografia , Humanos , Movimento , Músculo Esquelético , Acidente Vascular Cerebral/complicações
2.
Entropy (Basel) ; 23(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467619

RESUMO

Visual-motor tracking movement is a common and essential behavior in daily life. However, the contribution of future information to visual-motor tracking performance is not well understood in current research. In this study, the visual-motor tracking performance with and without future-trajectories was compared. Meanwhile, three task demands were designed to investigate their impact. Eighteen healthy young participants were recruited and instructed to track a target on a screen by stretching/flexing their elbow joint. The kinematic signals (elbow joint angle) and surface electromyographic (EMG) signals of biceps and triceps were recorded. The normalized integrated jerk (NIJ) and fuzzy approximate entropy (fApEn) of the joint trajectories, as well as the multiscale fuzzy approximate entropy (MSfApEn) values of the EMG signals, were calculated. Accordingly, the NIJ values with the future-trajectory were significantly lower than those without future-trajectory (p-value < 0.01). The smoother movement with future-trajectories might be related to the increasing reliance of feedforward control. When the task demands increased, the fApEn values of joint trajectories increased significantly, as well as the MSfApEn of EMG signals (p-value < 0.05). These findings enrich our understanding about visual-motor control with future information.

3.
J Neural Eng ; 18(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33075765

RESUMO

Objective.Traditional training focuses on improving the motor function level of the limbs or joint levels, while inter-muscular coordination plays an important role in fine motor control and is often overlooked. The purpose of this study was to investigate the changes in inter-muscular coordination induced by the myoelectric-controlled interface (MCI) and the therapeutic effects of MCI-based inter-muscular coordination training on stroke patients.Approach. Eleven stroke patients, twenty young subjects and thirteen age-matched subjects were recruited to determine the dimensionality effect of MCI on inter-muscular coordination in the evaluation test. In addition, a stroke patient participated in a 20-day training session to test the therapeutic effects as a case study analysis in the training test. In these two tests, all subjects performed tracking tasks by flexing/extending their elbows according to the biofeedback from one-dimensional and two-dimensional (2D) MCI. Meanwhile, the electromyography and functional near infrared spectroscopy signals were recorded simultaneously to reflect the muscle and cortical activations.Main results. In all groups, as the MCI dimensionality increased, the antagonist activation decreased significantly, while the involvement in prefrontal cortex and primary motor cortex increased significantly. A significant reduction in muscle activation and an increase in cortical activation were found in the stroke patient, which might be due to a progressive normalization of patient after the training.Significance. These findings suggested that 2D MCI could be an effective tool to directly modulate inter-muscular coordination for stroke patients. Inter-muscular coordination training may restore the ability to coordinate agonist-antagonist muscle of stroke patient and this improvement may be accompanied by cortical reorganization.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Computadores , Estudos Transversais , Eletromiografia , Humanos , Estudos Longitudinais , Músculo Esquelético , Reabilitação do Acidente Vascular Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA