Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 29(3-4): 521-535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066392

RESUMO

Osteosarcoma, a common malignant tumor in children, has emerged as a major threat to the life and health of pediatric patients. Presently, there are certain limitations in the diagnosis and treatment methods for this disease, resulting in inferior therapeutic outcomes. Therefore, it is of great importance to study its pathogenesis and explore innovative approaches to diagnosis and treatment. In this study, a non-negative matrix decomposition method was employed to conduct a comprehensive investigation and analysis of aggregated autophagy-related genes within 331,394 single-cell samples of osteosarcoma. Through this study, we have elucidated the intricate communication patterns among various cells within the tumor microenvironment. Based on the classification of aggregated autophagy-related genes, we are not only able to more accurately predict patients' prognosis but also offer robust guidance for treatment strategies. The findings of this study hold promise for breakthroughs in the diagnosis and treatment of osteosarcoma, intervention of aggrephagy is expected to improve the survival rate and quality of life of osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Criança , Macroautofagia , Qualidade de Vida , Microambiente Tumoral/genética , Apoptose , Osteossarcoma/diagnóstico , Osteossarcoma/genética , Comunicação Celular , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética
2.
J Funct Biomater ; 14(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103293

RESUMO

Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes (Exos), the paracrine secretion of MSCs, have been found to protect chondrocytes, reduce inflammation, and preserve the cartilage matrix. In this study, we used Exos derived from TE-pretreated adipose-derived stem cells (ADSCs) (TE-ExoADSCs) as an injection medium, and compared it with Exos derived from unpretreated ADSCs (ExoADSCs). We found that TE-ExoADSCs could effectively enhance the matrix synthesis of chondrocytes in vitro. Moreover, TE pretreatment increased the ability of ADSCs to secrete Exos. In addition, compared with ExoADSCs, TE-ExoADSCs exhibited therapeutic effects in the anterior cruciate ligament transection (ACLT)-induced OA model. Further, we observed that TE altered the microRNA expression in ExoADSCs and identified one differentially upregulated microRNA: miR-451-5p. In conclusion, TE-ExoADSCs helped maintain the chondrocyte phenotype in vitro, and promoted cartilage repair in vivo. These therapeutic effects might be related with the altered expression of miR-451-5p in the ExoADSCs. Thus, the intra-articular delivery of Exos derived from ADSCs with TE pretreatment could be a new approach to treat OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA