Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Plant J ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824648

RESUMO

Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.

2.
Adv Sci (Weinh) ; : e2402030, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837686

RESUMO

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aß deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.

3.
Clin Transl Oncol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918302

RESUMO

BACKGROUND: Few studies have been designed to predict the survival of Chinese patients initially diagnosed with metastatic gastric cancer (mGC). Therefore, the objective of this study was to construct and validate a new nomogram model to predict cancer-specific survival (CSS) in Chinese patients. METHODS: We collected 328 patients with mGC from Northern Jiangsu People's Hospital as the training cohort and 60 patients from Xinyuan County People's Hospital as the external validation cohort. Multivariate Cox regression was used to identify risk factors, and a nomogram was created to predict CSS. The predictive performance of the nomogram was evaluated using the consistency index (C-index), the calibration curve, and the decision curve analysis (DCA) in the training cohort and the validation cohort. RESULTS: Multivariate Cox regression identified differentiation grade (P < 0.001), T-stage (P < 0.05), N-stage (P < 0.001), surgery (P < 0.05), and chemotherapy (P < 0.001) as independent predictors of CSS. Nomogram of chemotherapy regimens and cycles was also designed by us for the prediction of mGC. Thus, these factors are integrated into the nomogram model: the C-index value was 0.72 (95% CI 0.70-0.85) for the nomogram model and 0.82 (95% CI 0.79-0.89) and 0.73 (95% CI 0.70-0.86) for the internal and external validation cohorts, respectively. Calibration curves and DCA also demonstrated adequate fit and ideal net benefit in prediction and clinical applications. CONCLUSIONS: We established a practical nomogram to predict CSS in Chinese patients initially diagnosed with mGC. Nomograms can be used to individualize survival predictions and guide clinicians in making therapeutic decisions.

4.
Eur J Med Chem ; 275: 116610, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38896992

RESUMO

Mutations in IDH1 are commonly observed across various cancers, causing the conversion of α-KG to 2-HG. Elevated levels of 2-HG disrupt histone and DNA demethylation processes, promoting tumor development. Consequently, there is substantial interest in developing small molecule inhibitors targeting the mutant enzymes. Herein, we report a structure-based high-throughput virtual screening strategy using a natural products library, followed by hit-to-lead optimization. Through this process, we discover a potent compound, named 11s, which exhibited significant inhibition to IDH1 R132H and IDH1 R132C with IC50 values of 124.4 and 95.7 nM, respectively. Furthermore, 11s effectively reduced 2-HG formation, with EC50 values of 182 nM in U87 R132H cell, and 84 nM in HT-1080 cell. In addition, 11s significantly reduced U87 R132H and HT-1080 cell proliferation with GC50 values of 3.48 and 1.38 µM, respectively. PK-PD experiments further confirmed that compound 11s significantly decreased 2-HG formation in an HT-1080 xenograft mouse model, resulting in notable suppression of tumor growth without apparent loss in body weight.

5.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793439

RESUMO

In pressurized water reactors, LiOH may be concentrated in some areas, leading to the accelerated corrosion of fuel claddings. Injecting boric acid into primary coolants can mitigate the accelerated corrosion effect of LiOH on Zircaloys, but the effects of boron content on the corrosion behavior of the Zr-Sn-Nb alloy are still unknown. This work focused on the corrosion and hydrogen absorption behavior at 360 °C/18.6 MPa in 100 mg/kg LiOH solutions with 0 mg/kg, 50 mg/kg, and 200 mg/kg boron contents for up to 510 days, aiming to study the effect of boron content on corrosion resistance in LiOH solutions. Corrosion kinetics, microstructures of oxide films, hydrogen absorption concentrations and hydride morphology were obtained after the test. The results show that injecting boron in LiOH solutions can significantly reduce the corrosion weight gain, hydrogen concentration, and hydrogen length of Zr-Sn-Nb alloys, that is, improving corrosion resistance effectively. During the oxidation of the Zr-Sn-Nb alloy, B3+ and Li+ incorporate in oxide films. The incorporation of Li+ may lead to the generation of oxygen vacancies, which can carry oxygen from the solutions to O/M interface, accelerating corrosion. The incorporation of B3+ in oxide films will slow down the oxidation of Zr-Sn-Nb alloys by reducing the oxygen vacancies caused by Li+ aggregation.

6.
Toxics ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668505

RESUMO

Lead (Pb) and arsenic (As) are commonly occurring heavy metals in the environment and produce detrimental impacts on the central nervous system. Although they have both been indicated to exhibit neurotoxic properties, it is not known if they have joint effects, and their mechanisms of action are likewise unknown. In this study, zebrafish were exposed to different concentrations of Pb (40 µg/L, 4 mg/L), As (32 µg/L, 3.2 mg/L) and their combinations (40 µg/L + 32 µg/L, 4 mg/L + 3.2 mg/L) for 30 days. The histopathological analyses showed significant brain damage characterized by glial scar formation and ventricular enlargement in all exposed groups. In addition, either Pb or As staining inhibited the swimming speed of zebrafish, which was enhanced by their high concentrations in a mixture. To elucidate the underlying mechanisms, we examined changes in acetylcholinesterase (AChE) activity, neurotransmitter (dopamine, 5-hydroxytryptamine) levels, HPI axis-related hormone (cortisol and epinephrine) contents and neurodevelopment-related gene expression in zebrafish brain. The observations suggest that combined exposure to Pb and As can cause abnormalities in swimming behavior and ultimately exacerbate neurotoxicity in zebrafish by interfering with the cholinergic system, dopamine and 5-hydroxytryptamine signaling, HPI axis function as well as neuronal development. This study provides an important theoretical basis for the mixed exposure of heavy metals and their toxicity to aquatic organisms.

7.
Acta Pharmacol Sin ; 45(7): 1492-1505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538718

RESUMO

Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Células Matadoras Naturais/imunologia , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Linfócitos do Interstício Tumoral/imunologia , Fenótipo , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38478435

RESUMO

Estimating reliable geometric model parameters from the data with severe outliers is a fundamental and important task in computer vision. This paper attempts to sample high-quality subsets and select model instances to estimate parameters in the multi-structural data. To address this, we propose an effective method called Latent Semantic Consensus (LSC). The principle of LSC is to preserve the latent semantic consensus in both data points and model hypotheses. Specifically, LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses, respectively. Then, LSC explores the distributions of points in the two latent semantic spaces, to remove outliers, generate high-quality model hypotheses, and effectively estimate model instances. Finally, LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting, due to its deterministic fitting nature and efficiency. Compared with several state-of-the-art model fitting methods, our LSC achieves significant superiority for the performance of both accuracy and speed on synthetic data and real images. The code will be available at https://github.com/guobaoxiao/LSC.

9.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336054

RESUMO

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Assuntos
Cádmio , Neoplasias , Camundongos , Animais , Cádmio/farmacologia , Linhagem Celular Tumoral , Glutamina/metabolismo , Glutamina/farmacologia , Reprogramação Metabólica , Transição Epitelial-Mesenquimal , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia
10.
Macromol Rapid Commun ; 45(7): e2300648, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228154

RESUMO

Conjugated polymers with strong absorption in the second near-infrared (NIR-II) window have multiple applications. However, the development of new type of NIR-II conjugated polymers via facile and green methods remains challenging. Herein, this work reports a mild and convenient transition-metal-free method to synthesize near-infrared absorbing quinoidal conjugated polymers containing para-azaquinodimethane (AQM) moieties. The AQM quinoidal conjugated polymers with unique molecular structures and tunable optoelectronic properties can be synthesized by combining the Knoevenagel polycondensation of aromatic dialdehyde monomers with commercially available 1,4-diacetyl-2,5-piperazinedione and the following alkylation reaction. The resultant polymer PQ-DPP shows remarkable NIR-II absorption with a narrow band gap of about 1.08 eV. PQ-DPP nanoparticles exhibit high photothermal conversion efficiency of up to 48% under 1064 nm laser irradiation (1 W cm-2) endowing this polymer with potential in bio-related applications.


Assuntos
Nanopartículas , Elementos de Transição , Polímeros/química , Nanopartículas/química , Diacetil
11.
J Biomol Struct Dyn ; 42(3): 1249-1267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37042992

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) and c-Mesenchymal epithelial transition factor (c-Met) are tyrosine kinase receptors associated with the occurrence of malignant tumors. Studies have shown that inhibition of VEGFR2 promotes a feedback increase in c-Met, a mechanism linked to the emergence of resistance to VEGFR2 inhibitors. Therefore, treatment targeting both VEGFR2 and c-Met will have better application prospects. In this study, hierarchical virtual screening was performed on ZINC15, Molport and Mcule-ULTIMATE databases to identify potential VEGFR2/c-Met dual inhibitors. Firstly, the best pharmacophore model for each target was used to cross-screen the three databases, and the compounds that could match the two pharmacophore models were then retained based on the Fit Value of the respective crystal ligands. Compounds ZINC, MOL, and MLB named after their database sources were retained by binding pattern analysis and docking assessment. ADMET predictions indicated that ZINC had significantly higher oral bioavailability compared to the approved drug cabozantinib. This is likely due to ZINC's unique symmetrical backbone with less structure complexity, which may reduce the occurrence of adverse effects. Molecular dynamics simulations and binding free energy analysis showed that all three hit compounds were able to stably bind at the active site, but only ZINC could form high occupancy of hydrogen bonds with both VEGFR2 and c-Met, and also only ZINC had a higher binding free energy than crystal ligands, suggesting that ZINC was the most likely potential VEGFR2/c-Met dual-target inhibitor. This finding provides a promising starting point for the development of VEGFR2/c-Met dual-target inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Proteínas Quinases , Fator A de Crescimento do Endotélio Vascular , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Zinco , Ligantes
12.
Med Image Anal ; 92: 103061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086235

RESUMO

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: (1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. (2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. (3) SAM performed better with manual hints, especially box, than the Everything mode. (4) SAM could help human annotation with high labeling quality and less time. (5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. (6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. (7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. (8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. Codes and models are available at: https://github.com/yuhoo0302/Segment-Anything-Model-for-Medical-Images. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos
13.
Biomed Pharmacother ; 169: 115937, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38007934

RESUMO

Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored. In the present study, we observed that bleomycin (BLM) induced enhanced mitophagy accompanied by increased mitochondrial ROS (mito-ROS) content in the murine alveolar epithelial cell line MLE12. While EETs reduced BLM-induced mitophagy and mito-ROS content in MLE12 cells, and the mechanism was related to the regulation of NOX4/Nrf2-mediated redox imbalance. Furthermore, we found that inhibition of EETs degradation could significantly inhibit mitophagy and regulate NOX4/Nrf2 balance to exert anti-oxidant effects in D-galactose-induced premature aging mice. Collectively, these findings may provide new ideas for treating age-related pulmonary diseases by targeting EETs to improve mitochondrial dysfunction and reduce oxidative stress.


Assuntos
Células Epiteliais Alveolares , Pneumopatias , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Senescência Celular
14.
Vet Q ; 43(1): 1-11, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921498

RESUMO

Epigallocatechin gallate (EGCG) is a main component in green tea extract, which possesses multiple bioactivities. The present research studied the effects of EGCG on the laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of Linwu laying ducks reared under high temperature. A total of 180 42-w-old healthy Linwu laying ducks were allocated into control or EGCG-treated groups. Each treatment had 6 replicates with 15 ducks in each replicate. Diets for the two groups were basal diets supplemented with 0 or 300 mg/kg EGCG, respectively. All ducks were raised in the high temperature condition (35 ± 2 °C for 6 h from 10:00 to 16:00, and 28 ± 2 °C for the other 18 h from 16:00 to 10:00 the next day) for 21 days. Results showed that EGCG increased the egg production rate (p = 0.014) and enhanced the immunocompetence by improving serum levels of immunoglobulin A (p = 0.008) and immunoglobulin G (p = 0.006). EGCG also fortified the antioxidant capacity by activating superoxide dismutase (p = 0.012), catalase (p = 0.009), and glutathione peroxidase (p = 0.021), and increasing the level of heat-shock protein 70 (p = 0.003) in laying ducks' liver. At the same time, hepatic metabolomics result suggested that EGCG increased the concentration of several key metabolites, such as spermidine (p = 0.031), tetramethylenediamine (p = 0.009), hyoscyamine (p = 0.026), ß-nicotinamide adenine dinucleotide phosphate (p = 0.038), and pantothenic acid (p = 0.010), which were involved in the metabolic pathways of glutathione metabolism, arginine and proline metabolism, ß-alanine metabolism, and tropane, piperidine, and pyridine alkaloid biosynthesis. In conclusion, 300 mg/kg dietary EGCG showed protection effects on the laying ducks reared in high temperature by improving the immune and antioxidant capacities, which contributed to the increase of laying performance of ducks. The potential mechanism could be that EGCG modulate the synthesis of key metabolites and associated metabolic pathways.


Assuntos
Antioxidantes , Patos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Temperatura , Suplementos Nutricionais , Dieta , Fígado/metabolismo , Metaboloma , Ração Animal/análise
15.
Sci Total Environ ; 905: 167039, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37716689

RESUMO

Cadmium (Cd), a predominant environmental pollutant, is a canonical toxicant that acts on the kidneys. However, the nephrotoxic effect and underlying mechanism activated by chronic exposure to Cd remain unclear. In the present study, male mice (C57BL/6J, 8 weeks) were treated with 0.6 mg/L cadmium chloride (CdCl2) administered orally for 6 months, and tubular epithelial cells (TCMK-1 cells) were treated with low-dose (1, 2, and 3 µM) CdCl2 for 72 h (h). Our study results revealed that environmental Cd exposure triggered ferroptosis and renal dysfunction. Spatially resolved metabolomics enabled delineation of metabolic profiles and visualization of the disruption to glutathione homeostasis related to ferroptosis in mouse kidneys. Multiomics analysis revealed that chronic Cd exposure induced glutathione redox imbalance that depended on STEAP3-driven lysosomal iron overload. In particular, glutathione metabolic reprogramming linked to ferroptosis emerged as a metabolic hallmark in the blood of Cd-exposed workers. In conclusion, this study provides the first evidence indicating that chronic Cd exposure triggers ferroptosis and renal dysfunction that depend on STEAP3-mediated glutathione redox imbalance, greatly increasing our understanding of the metabolic reprogramming induced by Cd exposure in the kidneys and providing novel clues linking chronic Cd exposure to nephrotoxicity.


Assuntos
Ferroptose , Nefropatias , Humanos , Masculino , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Camundongos Endogâmicos C57BL , Oxirredução , Nefropatias/induzido quimicamente , Glutationa/metabolismo
16.
Ecotoxicol Environ Saf ; 265: 115517, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776818

RESUMO

Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.

17.
Environ Pollut ; 337: 122606, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742865

RESUMO

Cadmium (Cd) is known as a widespread environmental neurotoxic pollutant. Cd exposure is recently recognized as an etiological factor of Parkinson's disease (PD) in humans. However, the mechanism underlying Cd neurotoxicity in relation to Parkinsonism pathogenesis is unclear. In our present study, C57BL/6 J mice were exposed to 100 mg/L CdCl2 in drinking water for 8 weeks. It was found Cd exposure caused motor deficits, decreased DA neurons and induced neuropathological changes in the midbrain. Non-targeted lipidomic analysis uncovered that Cd exposure altered lipid profile, increased the content of proinflammatory sphingolipid ceramides (Cer), sphingomyelin (SM) and ganglioside (GM3) in the midbrain. In consistency with increased proinflammatory lipids, the mRNA levels of genes encoding sphingolipids biosynthesis in the midbrain were dysregulated by Cd exposure. Neuroinflammation in the midbrain was evinced by the up-regulation of proinflammatory cytokines at mRNA and protein levels. Blood Cd contents and lipid metabolites in Parkinsonism patients by ICP-MS and LC-MS/MS analyses demonstrated that elevated blood Cd concentration and proinflammatory lipid metabolites were positively associated with the score of Unified Parkinson's Disease Rating Scale (UPDRS). 3 ceramide metabolites in the blood showed good specificity as the candidate biomarkers to predict and monitor Parkinsonism and Cd neurotoxicity (AUC>0.7, p < 0.01). In summary, our present study uncovered that perturbed sphingomyelin lipid metabolism is related to the Parkinsonism pathogenesis and Cd neurotoxicity, partially compensated for the deficiency in particular metabolic biomarkers for Parkinsonism in relation to Cd exposure, and emphasized the necessity of reducing Cd exposure at population level.


Assuntos
Cádmio , Doença de Parkinson , Humanos , Camundongos , Animais , Cádmio/toxicidade , Esfingolipídeos , Doenças Neuroinflamatórias , Esfingomielinas , Camundongos Endogâmicos C57BL , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mesencéfalo , Ceramidas , RNA Mensageiro , Biomarcadores
18.
Drug Des Devel Ther ; 17: 2495-2511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637264

RESUMO

Purpose: Myocardial ischemic reperfusion injury (MIRI) is a crucial clinical problem globally. The molecular mechanisms of MIRI need to be fully explored to develop new therapeutic methods. Galangin (Gal), which is a natural flavonoid extracted from Alpinia Officinarum Hance and Propolis, possesses a wide range of pharmacological activities, but its effects on MIRI remain unclear. This study aimed to determine the pharmacological effects of Gal on MIRI. Methods: C57BL/6 mice underwent reperfusion for 3 h after 45 min of ischemia, and neonatal rat cardiomyocytes (NRCs) subjected to hypoxia and reoxygenation (HR) were cultured as in vivo and in vitro models. Echocardiography and TTC-Evans Blue staining were performed to evaluate the myocardial injury. Transmission electron microscope and JC-1 staining were used to validate the mitochondrial function. Additionally, Western blot detected ferroptosis markers, including Gpx4, FTH, and xCT. Results: Gal treatment alleviated cardiac myofibril damage, reduced infarction size, improved cardiac function, and prevented mitochondrial injury in mice with MIRI. Gal significantly alleviated HR-induced cell death and mitigated mitochondrial membrane potential reduction in NRCs. Furthermore, Gal significantly inhibited ferroptosis by preventing iron overload and lipid peroxidation, as well as regulating Gpx4, FTH, and xCT expression levels. Moreover, Gal up-regulated nuclear transcriptive factor Nrf2 in HR-treated NRCs. Nrf2 inhibition by Brusatol abolished the protective effect of Gal against ferroptosis. Conclusion: This study revealed that Gal alleviates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Camundongos , Ratos , Animais , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Flavonoides/farmacologia , Isquemia , Transdução de Sinais , Hipóxia
19.
Eur J Pharmacol ; 957: 175965, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625682

RESUMO

Atherosclerosis (AS)-associated cardiovascular diseases are predominant causes of morbidity and mortality worldwide. Melatonin, a circadian hormone with anti-inflammatory activity, may be a novel therapeutic intervention for AS. However, the exact mechanism is unclear. This research intended to investigate the mechanism of melatonin in treating AS. Melatonin (20 mg/kg/d) was intraperitoneally administered in a high-fat diet (HFD)-induced AS model using apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. Immunohistochemical and immunofluorescence analyses, data-independent acquisition (DIA)-based protein profiling, ingenuity pathway analysis (IPA), and western blotting were employed to investigate the therapeutic effects of melatonin in treating HFD-induced AS. An adeno-associated virus (AAV) vector was further used to confirm the antiatherosclerotic mechanism of melatonin. Melatonin treatment markedly attenuated atherosclerotic lesions, induced stable phenotypic sclerotic plaques, inhibited macrophage infiltration, and suppressed the production of proinflammatory cytokines in ApoE-/- mice with HFD-induced AS. Notably, DIA-based quantitative proteomics together with IPA identified S100a9 as a pivotal mediator in the protective effects of melatonin. Moreover, melatonin significantly suppressed HFD-induced S100a9 expression at both the mRNA and protein levels. The overexpression of S100a9 significantly activated the NF-κB signaling pathway and markedly abolished the antagonistic effect of melatonin on HFD-induced vascular inflammation during atherogenesis. Melatonin exerts a significant antiatherogenic effect by inhibiting S100a9/NF-κB signaling pathway-mediated vascular inflammation. Our findings reveal a novel antiatherosclerotic mechanism of melatonin and underlie its potential clinical use in modulating AS with good availability and affordability.


Assuntos
Aterosclerose , Melatonina , Animais , Camundongos , Melatonina/farmacologia , Melatonina/uso terapêutico , NF-kappa B , Aterosclerose/tratamento farmacológico , Apolipoproteínas E/genética , Inflamação/tratamento farmacológico
20.
Nanoscale ; 15(35): 14439-14447, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37642315

RESUMO

The electroreduction of nitrate to ammonia is both an alternative strategy to industrial Haber-Bosch ammonia synthesis and a prospective idea for changing waste (nitrate pollution of groundwater around the world) into valuable chemicals, but still hindered by its in-process strongly competitive hydrogen evolution reaction (HER), low ammonia conversion efficiency, and the absence of stability and sustainability. Considering the unique electronic structure of anti-perovskite structured Fe4N, a tandem disproportionation reaction and nitridation-carbonation route for building a multi-layer core-shell oxide/nitride/C catalyst, such as MoO2/Fe4N/C, is designed and executed, in which abundant Fe-N active sites and rich phase interfaces are in situ formed for both suppressing HER and fast transport of electrons and reaction intermediates. As a result, the sample's NO3RR conversion displays a very high NH3 yield rate of up to 11.10 molNH3 gcat.-1 h-1 (1.67 mmol cm-2 h-1) with a superior 99.3% faradaic efficiency and the highest half-cell energy efficiency of 30%, surpassing that of most previous reports. In addition, it is proved that the NO3RR assisted by the MoO2/Fe4N/C electrocatalyst can be carried out in 0.50-1.00 M KNO3 electrolyte at a pH value of 6-14 for a long time. These results guide the rational design of highly active, selective, and durable electrocatalysts based on anti-perovskite Fe4N for the NO3RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA